
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Security and Hardening in
Continuous Delivery

presented by

Julian Schwarz

Aachen, September 30, 2019

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

Security and Hardening in Continuous Delivery

independently and without illegitimate assistance from third parties. I have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

Security and Hardening in Continuous Delivery

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, September 30, 2019 (Julian Schwarz)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, September 30, 2019 (Julian Schwarz)

Acknowledgment

I would like to thank my supervisor Andreas Steffens for the continuous guidance and
assistance during this thesis including weekend corrections and 24/7 email support.

Additionally, I would like to thank all people at our industrial partner who took their
part in this thesis. Those include the two members of the DevOps team as well as the
security expert who dedicated their time to the validation and evaluation of this thesis.

Julian Schwarz

Abstract

Continuous Delivery (CD) as well as the term DevOps have become increasingly more
prevalent in recent years and play an important role in today’s modern agile development
methods. Unfortunately, security is often disregarded in an agile development process.
Additionally, traditional security methods are not suited for the continuous releases. Thus,
a problem we analyse in this thesis is the integration of security into CD by assessing the
implementability of the security standard DIN ISO/IEC 27001 with CD. At that, we
create a list of functional requirements delivery systems have to fulfil in order to comply
to the ISO 27001. Additionally, we create models which serve as a guidance for the
actual implementation, respectively realization. In the end, we use those requirements to
perform an analysis of our industry partner’s CD regarding the state of realization and
to gather further insights into the ISO 27001.

Contents

1 Introduction 1
1.1 Structure of this Thesis . 2

2 Background 3
2.1 Information Security Management System 3
2.2 Continuous Delivery . 4
2.3 DevOps . 8
2.4 Deployment Pipeline . 8
2.5 Security Framework Design Principles . 9
2.6 Well-known security frameworks . 9
2.7 Cloud Security Alliance . 13

3 Problem Statement 15
3.1 Challenges . 15

4 Related Work 17
4.1 DevOpsSec . 17
4.2 Practice of Security Standards . 20
4.3 Security Development Lifecycle . 21
4.4 OWASP SAMM . 22
4.5 Continuous Software Engineering and Agile Methods 22
4.6 Missing Requirements and Models . 25

5 Methodology 27
5.1 Scope of Work . 27
5.2 Research Questions . 28

6 Results 31
6.1 Statement of Applicability . 31
6.2 Resulting Major Categories . 61
6.3 Realization Roadmap . 64
6.4 Dependency Model . 68
6.5 Maturity Model . 68
6.6 CD maturity meets CD ISO Maturity Model 71
6.7 Realization Suggestions . 73

7 Discussion 85
7.1 SoA . 85

i

7.2 Discussion of Assignment Statistics . 90
7.3 Discussion of Models . 90

8 Conclusion 93
8.1 Threats to Validity . 94
8.2 Future Work . 94

Bibliography 95

Glossary 99

List of Tables

2.1 Maturity model for CD (adapted from [HF10]) 7
2.2 Key concepts in security architecture design principles (adapted from

[Hsu18]) . 10
2.3 Exemplary excerpt of Cloud Controls Matrix (CCM)[All] 14

4.1 Overview of constant monitoring mechanisms (adapted from [Hsu18]) . . 20
4.2 SAMM Overview with business functions belonging to software develop-

ment (adapted from [Sam]) . 23

6.2 Number of applicable controls of ISO 27001 (27002) with assignment to
model, system or process . 60

6.3 Realization roadmap Access Management 65
6.4 Realization roadmap Logging and Monitoring 65
6.5 Realization Roadmap Change Management 66
6.6 Realization Roadmap Artefacts and Systems 67
6.7 Realization Roadmap Other Policies . 67

iii

List of Figures

2.1 Maturity model for CD (adapted from [BRP13]) 6
2.2 Example of a deployment pipeline (adapted from [HF10]) 8
2.3 Relations between Software Delivery Process, Model and System (adapted

from [SLD18]) . 9
2.4 Areas of the ISO 27001 norm (adapted from [Hsu18]) 11
2.5 Areas of the General Data Protection Regulation (GDPR)[Gdp] 12

4.1 R-Scrum: Regulated Scrum implementation out of case study[Fit+13]
(copied from [Fit+13]) . 25

5.1 Overview of methodology . 29

6.1 Dependencies between requirements of ISO 27001 69
6.2 Maturity model as result of dependency model 70
6.3 Mapping of CD maturity model with our security maturity model 72

7.1 Number of applicable controls including new ones 87
7.2 Overview of assessment of correspondence 88
7.3 Current state of realization at our industry partner 89

v

1 Introduction

Innovation is hard. It really is.
Because most people don’t get it.
Remember, the automobile, the
airplane, the telephone, these
were all considered toys at their
introduction because they had no
constituency. They were too new.

Nolan Bushnell

Contents

1.1 Structure of this Thesis . 2

Continuous Delivery (CD) and the closely related term DevOps are becoming increas-
ingly more prevalent and used. Continuous Delivery (CD) plays an important role in
today’s modern agile development methods by empowering these with shorter develop-
ment cycles. DevOps on the other hand supports and implements CD with the right
tooling and it does this with increasing responsibility taking e.g. the rise of Infrastructure
as Code (IaC) into consideration which gained an important role for DevOps. Security is
often not considered in this accelerated development cycle. Systems get more complex
every day and security is usually not embedded into the development process. It is often
put in second place and is only considered with some more attention on release of a
certain piece of software. The problem is that CD features continuous releases for which
traditional security methods are not suited. Thus we need to integrate security into the
CD cycle. In recent years the new terms DevOpsSec or SecDevOps were formed which
address exactly this problem[MCP17].

On the other hand, there exists a variety of security standards for information systems
like the ISO 27001, the BSI200-1 which is regularly adjusted to the ISO 27001, etc. for
whom companies can get certified. However, often not considered is the realization of
those standards as a responsibility of the DevOps team, respectively there is not much
literature regarding DevOpsSec in combination with security standards[MO16].

In this thesis we focus on the ISO 27001 as an information security standard for which
we assess its implementability with CD, respectively want to answer the question which
controls of the ISO 27001 can be supported (only) with CD. Thereby, we also assess the
realizability to the best of our knowledge and give suggestions on how to implement the
extracted requirements. The goal is to create a model for assessing and reviewing the
current situation inside an organization regarding their current state of CD and how
much of the ISO 27001 they already implement. Moreover, it serves as a guide to increase

1

1 Introduction

the security through improvement of the CD process.
In the end, we perform an evaluation which includes a validation of our assessment of

the implementability of the controls of the ISO 27001 to CD. Furthermore, we analyse,
respectively discuss the current degree of ISO 27001 compliance of the CD as it is used
by our industry partner.
At that, we deliberately focus on CD instead of DevOps, since it gives us a clearer,

more abstract (CD as a process) but in the end also a better definable scope.
This work is done in cooperation with an industry partner which maintains multiple

locations in Germany and across the globe. It offers various services in software, hardware
and engineering. More precisely, this thesis is written for the Operations & Engineering
team being part of the ISO 27001 certification of the company which is also the reasoning
of our choice of the ISO 27001.

1.1 Structure of this Thesis
All necessary information and context for this thesis is given in chapter 2. This includes
definitions for CD, DevOps and introduces several security standards. In Chapter 4 we
then present security related work for DevOps which includes terminology like DevOpsSec
and continuous security. Eventually, in chapter 3, we list the challenges followed by
related work in chapter 4. In chapter 5 we then formulate our research questions based
on the problem statement and the existing related work. As the central part of this
thesis, in chapter 6 we give a detailed analysis of the ISO 27001 in in order to answer
the research questions. Chapter 6 also comprises the different models based on the
detailed analysis of the ISO 27001 and a list of realization suggestions for every functional
requirement. Finally, chapter 7 deals with a discussion of the Statement of Applicability
(SoA) involving 2 members of the DevOps team of our industry partner. Additionally, we
discuss our models there. Chapter 8 then summarizes the most important aspects of this
thesis. Furthermore, it deals with the threats to validity of this work and future work.

2

2 Background

Excellence is a continuous process
and not an accident.

A. P. J. Abdul Kalam

Contents

2.1 Information Security Management System 3
2.2 Continuous Delivery . 4

2.2.1 Maturity Models . 5
2.3 DevOps . 8
2.4 Deployment Pipeline . 8
2.5 Security Framework Design Principles 9
2.6 Well-known security frameworks . 9

2.6.1 ISO 27001 . 11
2.6.2 BSI 200-1 . 12
2.6.3 EU GDPR . 12

2.7 Cloud Security Alliance . 13

In this chapter, we cover the basic definitions and frameworks needed to built upon
in the further course of this thesis. There exists a huge number of security frameworks,
however, we can not cover all of them in this section. Therefore, we focus on the most
important and well-known ones such as the BSI-Standard 200-1 (see section 2.6.2),
but also the EU General Data Protection Regulation (GDPR) (see section 2.6.3) and
naturally the ISO 27001 (see section 2.6.1) which is an integral component of this thesis.
Moreover, we shortly deal with the Cloud Security Alliance (CSA) (see section 2.7) which
consolidates many security standards, including BSI 200-1 and the ISO 27001-27005.

2.1 Information Security Management System
According to the BSI-Standard 200-1[Bsia] a management system

embraces all the policies pertaining to supervision and management for the
purpose of achieving the organisation’s objectives.

An Information Security Management System (ISMS) thereby is part of the management
system and specifies

the instruments and methods that the management level should use to
clearly manage (plan, adopt, implement, supervise and improve) the tasks
and activities aimed at achieving information security.

3

2 Background

This includes the essential components management principles, resources, employees and
the security process.

2.2 Continuous Delivery

CD is a software engineering approach which focuses on reducing cycle times of software
deployment. According to Humble et al.[HF10], software releases should be a low-risk,
frequent, cheap, rapid and predictable process. Furthermore, it ensures that software can
be released at any time[Che15]. Humble et al. introduce the following release antipatterns
which stay in contrast to CD.

The first antipattern is named deploying software manually. This antipattern is
identified by frequent manual involvement in the build, respectively release process, e.g. if
the release process requires frequent corrections or manual testing is required to confirm
that the application is running. Steps in the pipeline are often considered to be separate
and atomic, and different individuals perform different steps which leads to different
ordering and timing of the steps. Resulting disadvantage of such a manual deployment
comprise of among others the missing reproducibility and therewith missing reliability,
the need to maintain deployment documentation and other waste of resources, since
performing manual deployments is boring and repetitive, yet requires a significant degree
of expertise. The remedy is to automate deployment[HF10].
The second antipattern deploying to a production-like environment only after devel-

opment is complete is identified e.g. if before a release, testers tested the system only
on development machines or if releasing into staging is the first time that operations
people interact with a new release. Disadvantages as a result of this antipattern among
others comprise the detection of new bugs when an application is deployed into staging,
the documentation of the general process (steps) of deploying an application to staging
often misses steps since it was never performed and furthermore the steps itself often
are erroneous, because they were never performed. Here, the remedy is to integrate the
testing, deployment, and release activities into the development process[HF10].
The last antipattern is called manual configuration management of production envi-

ronments. It is identified by failing deployments to production even though multiple
deployments to staging were successful. Furthermore, it is identified by a long prepa-
ration time of the operations team for an environment for a release, or by servers in
clusters having different versions of operating systems, etc.. Finally, the remedy of this
antipattern is to apply all aspects of each testing, staging and production environments,
the configuration of any third-party elements of a system from version control to an
automated process.
In the end a reduced cycle time also leads to less opportunity costs associated with

not delivering software and it allows to verify features and bugfixes with respect to their
usefulness[HF10].

Humble et al. state that in order to achieve a low cycle time and high quality, automated
and frequent releases of software are required. Frequent, to have as small deltas between
releases as possible in order to reduce the risk associated with releasing and roll-backs

4

2.2 Continuous Delivery

of software. Feedback, especially fast one is extremely important in order to e.g. allow
delivery teams to fix issues.

Finally, in order to classify and therefore allowing organizations to assess and improve
their CD, the following section deals with two maturity models for CD in which levels,
respectively classifications are defined. Moreover, the maturity models give a good
overview of the general areas, but also lay out concrete aspects which can or should
be realized for CD. This is helpful, since the definition and approach of a motivation
for continuous delivery in the text above is quite general with the aim to introduce
automated and frequent releases. However, it does not give any hint or even concrete
aspects regarding their actual realization, because it is in the nature of CD being a
complex problem with various kinds of areas to work on. This is where the maturity
models can help.

2.2.1 Maturity Models

In the following we deal with 2 maturity models for continuous delivery.

Rehn et al.

Rehn et al. decided for their continuous delivery model shown in Figure 2.1 to introduce
five levels of maturity and five categories. The levels range from base to expert whereas the
categories comprise Culture & Organization, Design & Architecture, Build & Deploy, Test
& Verification, and Information & Reporting. The model should serve as an evaluation
of a company’s maturity in order to identify actions which increase maturity most
efficiently[BRP13]. To give an orientation, Rehn et al. state that the base level is where
they see most organizations as of 2013. They consider organizations to benefit from the
larger effects at the intermediate maturity level. After all, the levels are not mandatory
stages which have to be passed in sequence, but rather serve as an orientation. Rehn
et al. suggest to keep the maturity level fairly even over all categories and to favour
incremental improvements over big changes in order to increase the acceptance in the
organization.

Humble et al.

Humble et al. created a maturity model whose main focus is to reduce cycle times,
to reduce defects, to increase the predictability of the software delivery lifecycle, to
improve the ability to adopt and maintain an attitude of compliance to any regulatory
regime, to improve the ability to determine and manage the risks associated with software
delivery effectively, and to reduce costs. Therefore, they recommend to apply the Deming
cycle which states to first plan, then do, then check and finally to act, respectively to
review[HF10]. Furthermore, they carefully address all the roles involved in the delivery
process including their interactions. The complete maturity model is shown in Table 2.1

5

2 Background

Figure
2.1:M

aturity
m
odelfor

C
D

(adapted
from

[B
R
P13])

6

2.2 Continuous Delivery
P
ra
ct
ic
es

B
ui
ld

m
an

-
ag
em

en
t

an
d

co
nt
in
uo

us
in
te
-

gr
at
io
n

E
nv

ir
on

m
en
ts

an
d
de

pl
oy

m
en
t

R
el
ea
se

m
an

ag
e-

m
en
t

an
d

co
m
-

pl
ia
nc

e

T
es
ti
ng

D
at
a

m
an

ag
e-

m
en
t

C
on

fig
ur
at
io
n

m
an

ag
em

en
t

L
ev
el

3
-

O
p-

ti
m
iz
in
g:

Fo
cu
s

on
pr
oc
es
s
im

pr
ov
e-

m
en
t

Te
am

s
re
gu

la
rl
y

m
ee
t

to
di
sc
us
s

in
te
gr
at
io
n

pr
ob

-
le
m
s

an
d

re
so
lv
e

th
em

w
it
h

au
-

to
m
at
io
n,

fa
st
er

fe
ed
ba

ck
,

an
d

be
tt
er

vi
si
bi
lit
y.

A
ll

en
vi
ro
nm

en
ts

m
an

ag
ed

eff
ec
-

ti
ve
ly
.

P
ro
vi
-

si
on

in
g

fu
lly

au
to
m
at
ed
.

V
ir
-

tu
al
iz
at
io
n

us
ed

if
ap

pl
ic
ab

le
.

O
pe

ra
ti
on

s
an

d
de
-

liv
er
y

te
am

s
re
gu

-
la
rl
y
co
lla

bo
ra
te

to
m
an

ag
e

ri
sk
s

an
d

re
du

ce
cy
cl
e
ti
m
e.

P
ro
du

ct
io
n

ro
ll-

ba
ck
s
ra
re
.

D
ef
ec
t

fo
un

d
an

d
fix

ed
im

m
ed
ia
te
ly
.

R
el
ea
se

to
re
-

le
as
e

fe
ed
ba

ck
lo
op

of
da

ta
ba

se
pe

rf
or
m
an

ce
an

d
de
pl
oy

m
en
t

pr
o-

ce
ss
.

R
eg
ul
ar

va
lid

at
io
n

th
at

C
M

po
lic
y

su
pp

or
ts

eff
ec
-

ti
ve

co
lla

bo
ra
ti
on

,
ra
pi
d

de
ve
lo
pm

en
t,

an
d

au
di
ta
bl
e

ch
an

ge
m
an

ag
e-

m
en
t
pr
oc
es
s.

L
ev
el

2
-
Q
ua

n-
ti
ta
ti
ve
ly

m
an

-
ag
ed

:
P
ro
ce
ss

m
ea
su
re
d

an
d

co
nt
ro
lle

d

B
ui
ld

m
et
ri
cs

ga
th
-

er
ed
,

m
ad

e
vi
si
-

bl
e,

an
d

ac
te
d

on
.

B
ui
ld
s
ar
e
no

t
le
ft

br
ok
en
.

O
rc
he
st
ra
te
d

de
pl
oy

m
en
ts

m
an

-
ag

ed
.

R
el
ea
se

an
d

ro
llb

ac
k

pr
oc
es
se
s

te
st
ed
.

E
nv

ir
on

m
en
t

an
d

ap
pl
ic
at
io
n

he
al
th

m
on

it
or
ed

an
d

pr
oa
ct
iv
el
y

m
an

-
ag
ed
.

C
yc
le

ti
m
e

m
on

it
or
ed
.

Q
ua

lit
y

m
et
ri
cs

an
d
tr
en
ds

tr
ac
ke
d.

N
on

fu
nc
ti
on

al
re
-

qu
ir
em

en
ts

de
fin

ed
an

d
m
ea
su
re
d.

D
at
ab

as
e
up

gr
ad

es
an

d
ro
llb

ac
ks

te
st
ed

w
it
h

ev
-

er
y

de
pl
oy

m
en
t.

D
at
ab

as
e

pe
rf
or
-

m
an

ce
m
on

it
or
ed

an
d
op

ti
m
iz
ed
.

D
ev
el
op

er
s

ch
ec
k

in
to

m
ai
nl
in
e

at
le
as
t

on
ce

a
da

y.
B
ra
nc
hi
ng

on
ly

us
ed

fo
r
re
le
as
es
.

L
ev
el

1
-
C
on

si
s-

te
nt
:

A
ut
om

at
ed

pr
oc
es
se
s

ap
pl
ie
d

ac
ro
ss

w
ho

le
ap

pl
i-

ca
ti
on

lif
ec
yc
le

A
ut
om

at
ed

bu
ild

an
d
te
st

cy
cl
e
ev
er
y

ti
m
e

a
ch
an

ge
is

co
m
m
it
te
d.

D
ep

en
-

de
nc
ie
s

m
an

ag
ed
.

R
e-
us
e

of
sc
ri
pt
s

an
d
to
ol
s.

Fu
lly

au
to
m
at
ed
,

se
lf-
se
rv
ic
e

pu
sh
-

bu
tt
on

pr
oc
es
s
fo
r

de
pl
oy

in
g

so
ft
w
ar
e.

Sa
m
e

pr
oc
es
s

to
de
pl
oy

to
ev
er
y

en
vi
ro
nm

en
t.

C
ha

ng
e

m
an

ag
e-

m
en
t

an
d

ap
-

pr
ov
al
s

pr
oc
es
se
s

de
fin

ed
an

d
en
-

fo
rc
ed
.
R
eg
ul
at
or
y

an
d

co
m
pl
ia
nc
e

co
nd

it
io
ns

m
et
.

A
ut
om

at
ed

un
it

an
d

ac
ce
pt
an

ce
te
st
s,

th
e

la
t-

te
r

w
ri
tt
en

w
it
h

te
st
er
s.

Te
st
in
g

pa
rt

of
de
ve
lo
p-

m
en
t
pr
oc
es
s.

D
at
ab

as
e

ch
an

ge
s

pe
rf
or
m
ed

au
to
-

m
at
ic
al
ly

as
pa

rt
of

de
pl
oy

m
en
t

pr
oc
es
s.

Li
br
ar
ie
s

an
d

de
pe

nd
en
ci
es

m
an

-
ag
ed
.

V
er
si
on

co
nt
ro
l
us
ag
e

po
li-

ci
es

de
te
rm

in
ed

by
ch
an

ge
m
an

ag
e-

m
en
t
pr
oc
es
s.

L
ev
el

0
-

R
e-

p
ea
ta
bl
e:

P
ro
ce
ss

do
cu
m
en
te
d

an
d

pa
rt
ly

au
to
m
at
ed

R
eg
ul
ar

au
to
m
at
ed

bu
ild

an
d

te
st
in
g.

A
ny

bu
ild

ca
n

be
re
-c
re
at
ed

fr
om

so
ur
ce

co
nt
ro
l

us
in
g

au
to
m
at
ed

pr
oc
es
s

A
ut
om

at
ed

de
-

pl
oy
m
en
t

to
so
m
e

en
vi
ro
nm

en
ts
.

C
re
at
io
n

of
ne
w

en
vi
ro
nm

en
ts

is
ch
ea
p.

A
ll
co
nfi

gu
-

ra
ti
on

ex
te
rn
al
iz
ed

/
ve
rs
io
ne
d.

P
ai
nf
ul

an
d

in
fr
e-

qu
en
t,

bu
t
re
lia

bl
e,

re
le
as
es
.

Li
m
it
ed

tr
ac
ea
bi
lit
y

fr
om

re
qu

ir
em

en
ts

to
re
le
as
e.

A
ut
om

at
ed

te
st
s

w
ri
tt
en

as
pa

rt
of

st
or
y
de
ve
lo
pm

en
t.

C
ha

ng
es

to
da

ta
ba

se
s

do
ne

w
it
h

au
to
m
at
ed

sc
ri
pt
s

ve
rs
io
ne
d

w
it
h
ap

pl
ic
at
io
n.

V
er
si
on

co
nt
ro
l
in

us
e

fo
r
ev
er
yt
hi
ng

re
qu

ir
ed

to
re
cr
ea
te

so
ft
w
ar
e:

so
ur
ce

co
de

,c
on

fig
ur
at
io
n,

bu
ild

an
d

de
pl
oy

sc
ri
pt
s,
da

ta
m
ig
ra
-

ti
on

s.
L
ev
el

-1
-

R
eg
re
ss
iv
e:

P
ro
ce
ss
es

un
re
-

pe
at
ab

le
,

po
or
ly

co
nt
ro
lle

d,
an

d
re
ac
ti
ve

M
an

ua
l

pr
oc
es
se
s

fo
r

bu
ild

in
g

so
ft
-

w
ar
e.

N
o
m
an

ag
e-

m
en
t

of
ar
ti
fa
ct
s

an
d
re
po

rt
s

M
an

ua
l
pr
oc
es
s
fo
r

de
pl
oy

in
g

so
ft
w
ar
e.

E
nv

ir
on

m
en
t-

sp
ec
ifi
c

bi
na

ri
es
.

E
nv

ir
on

m
en
t
pr
ov

i-
si
on

ed
m
an

ua
lly
.

In
fr
eq
ue
nt

an
d

un
-

re
lia

bl
e
re
le
as
es
.

M
an

ua
l
te
st
in
g

af
-

te
r
de
ve
lo
pm

en
t.

D
at
a

m
ig
ra
ti
on

s
un

ve
rs
io
ne
d

an
d

pe
rf
or
m
ed

m
an

u-
al
ly
.

V
er
si
on

co
nt
ro
l

ei
th
er

no
t
us
ed
,
or

ch
ec
k-
in
s

ha
pp

en
in
fr
eq
ue
nt
ly
.

Ta
bl
e
2.
1:

M
at
ur
ity

m
od

el
fo
r
C
D

(a
da

pt
ed

fr
om

[H
F1

0]
)

7

2 Background

Figure 2.2: Example of a deployment pipeline (adapted from [HF10])

2.3 DevOps
Bass et al. provide the following definition for DevOps[BWZ15]:

DevOps is a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production,
while ensuring high quality.

The relation between DevOps and CD is that DevOps uses CD in order to reduce the
time between commit and production change.

2.4 Deployment Pipeline
There are different definitions of the pattern deployment pipeline. Humble et al.[HF10].
define a deployment pipeline as an

automated implementation of your application’s build, deploy, test, and
release process.
The purposes of a deployment pipeline are:

• visibility of process
• improvement of feedback, respectively having feedback as early as possi-

ble
• deploying and releasing any version to any environment fully automated

An example for a deployment pipeline according to the used terminology by
Humble et al.[HF10] is shown in Figure 2.2.
However, there exist further different definitions in literature. Thus, in this
thesis, we are going to use the consistent terminology defined by Steffens et.
al.[SLD18]. It consists out of three terms which specify the term deployment
pipeline.

• Software Delivery Model: A deployment pipeline models a delivery
process

• Software Delivery System: A deployment pipeline is an integrated soft-
ware system

• Software Delivery Process: a deployment pipeline exhibits characteristics
of a process

8

2.5 Security Framework Design Principles

Figure 2.3: Relations between Software Delivery Process, Model and System (adapted
from [SLD18])

Figure 2.3 illustrates the relationships between these terms.

2.5 Security Framework Design Principles

There are many reoccurring principles and corresponding controls in security
frameworks and standards in general and the frameworks covered in this
thesis pose no exception of that.

In his book Hands-On Security in DevOps[Hsu18] Tony Hsu deals among
others with security architecture and design principles which we address in
the following to give a profound understanding of security frameworks.

He introduces two key concepts in security architecture design principles:
security by design and privacy by design. They differ in the former having
unauthorized access to the system as a primary concern whereas the latter
deals with the authorized processing of private data. For both, he lists a
number of principles and a number of example controls which are shown
in Table 2.2 and can be found in the various security frameworks we cover
including the ISO 27001 (specifically in this thesis in section 6.1).

2.6 Well-known security frameworks

Even though this thesis is only based on the the ISO 27001, in the following
we also give an overview over some more well-known security frameworks,
respectively legislations.

9

2 Background

Concept Security by design Privacy by design
Principles

• Minimize attack surface
area

• Establish secure defaults
• Principles of least privi-

lege
• Principle of defense in
depth

• Fail securely
• Don’t trust services
• Separation of duties
• Avoid security by obscu-
rity

• Keep security simple
• Fix security issues cor-
rectly

• Collection Limitation
Principle

• Data Quality Principle
• Purpose Specification
Principle

• Use Limitation Principle
• Security Safeguards
Principle

• Openness Principle
• Individual Participation
Principle

• Accountability Principle

Examples of controls
• Access control
• Unsuccessful login at-

tempts
• Session control
• Timestamps
• Non-repudiation
• Configuration change
control

• Audit security events
• Cryptographic module
• Incident monitoring
• Error handling

• Cookie
• Anonymity
• Consent
• Obfuscation
• Restrict
• Notify and inform
• Authentication
• Minimization
• Separation
• Encryption
• Data masking

Table 2.2: Key concepts in security architecture design principles (adapted from [Hsu18])

10

2.6 Well-known security frameworks

Figure 2.4: Areas of the ISO 27001 norm (adapted from [Hsu18])

2.6.1 ISO 27001

The DIN ISO/IEC 27001, here ISO 27001, is an international standard whose
scope comprises controls for establishing, implementing, maintaining and
continually improving an information security system[Isob]. It is designed to
be used for internal and external assessment of an organization’s ability to meet
its own information security requirements. It is important to note that the
ISO 27001 is an ISMS which provides a complete set of security management
programs. Thus, it does not specify a technical security approach[Hsu18].

In Figure 2.4 an overview of the areas of the ISO 27001 is shown, as provided
by Tony Hsu[Hsu18].

Figure 2.4 shows that the ISO 27001 norm can be split into two areas of
responsibility. The upper area which comprises of topics which are more
related to the responsibilities of the DevOps team and the lower area which is
more related to company, respectively organization security policies[Hsu18].

11

2 Background

Figure 2.5: Areas of the GDPR[Gdp]

2.6.2 BSI 200-1

The BSI 200-1 standard is a security standard which is intended to form a
reasonable basis for persons in charge of security to ensure that the aspects
of information security management are adequately taken into account in
their organization and projects[Bsia]. Thereby, it provides information in a
step-by-step fashion. Similar to the ISO 27001 it describes how an ISMS can
be designed in terms of general methods and regarding the initiation and
management of information security in an organization.

2.6.3 EU GDPR

Not quite in the area of security but more in the area of privacy lays the
European Union (EU) GDPR[Gdp]. It contains regulations on data protection
and privacy in EU law. One of the main goals is to give individuals control
over their own personal data. The GDPR comprises of eleven chapters as
shown in Figure 2.5.

12

2.7 Cloud Security Alliance

In contrast to the other two security frameworks, the EU GDPR has to be
implemented, respectively followed by all companies in the European economic
area since it is a regulation in EU law

2.7 Cloud Security Alliance

The CSA is a non-profit organization which promotes the use of best prac-
tices for security within cloud computing. They consolidated most security
compliance methods in the Cloud Controls Matrix (CCM)[All] including the
ISO. This has the advantage that by referring to the CCM, we can assure
that all other security compliance standards are also met. To give an idea
of how the CCM looks, we created a more abstract representation shown in
Table 2.3.

13

2 Background

Control
Domain

Control
Specifica-
tion

Architectural
Relevance

Corp
Gov
Rele-
vance

Cloud
Ser-
vice
De-
livery
Model
Ap-
plica-
bility

Supplier
Rela-
tion-
ship

Scope Ap-
plicability

Application
& Interface
Security -
Application
Security

Applications
and inter-
faces shall be
designed, de-
veloped, and
deployed in
accordance
with industry
acceptable
standards
and adhere
to applica-
ble legal,
statutory, or
regulatory
compliance
obligations

Network,
Compute,
Storage, App,
Data

None SaaS,
PaaS,
IaaS

Service
Provider

NIST SP
800-53 R3
SC-5, NIST
SP 800-53 R3
SC-6, NIST
SP 800-53 R3
SC-7, NIST
SP 800-53 R3
SC-12, NIST
SP 800-53 R3
SC-13, NIST
SP 800-53
R3 SC-14,
A.11.5.6,
A.11.6.1,
A.12.2.1,
A.12.2.2,
A.12.2.3,
A.12.2.4,
A.12.5.2,
A.12.5.4,
A.12.5.5,
A.12.6.1,
A.15.2.1

Application
& Interface
Security -
Customer
Access Re-
quirements

...

Table 2.3: Exemplary excerpt of CCM[All]

14

3 Problem Statement

I don’t want to expose the
intricacies of my work so people
can understand how I did it.

Billy Crudup

Contents

3.1 Challenges . 15
3.1.1 Intricacy of Controls and Scope 15
3.1.2 Fuzziness of Controls 16
3.1.3 CD as ISMS . 16
3.1.4 Helpful Models 16

3.1 Challenges

The goal of this thesis is to provide guidance and models in order to help an
organization’s CD to maximally support and comply to the ISO 27001 and
to increase security with CD in general.
Therefore, we have to identify the controls of the ISO 27001 which lay
in the responsibility of the DevOps team or where the DevOps team can,
respectively has to provide support for. To identify the requirements, we
have to fit something as diverse as the ISO 27001 into a well-defined model,
respectively requirement specification for CD.

3.1.1 Intricacy of Controls and Scope

The first challenge is the intricacy which every control of the ISO 27001 entails.
Many controls are applicable to artefacts and systems or to systems and the
CD process itself or even to all of that.
Taking as an example a requirement which is applicable to the CD system.
Consequently this requirement also has to be fulfilled by a CD system which
is built in a CD system, thus every CD system also has to support the
verification of this requirement. This obviously is an infinite loop. So, we also

15

3 Problem Statement

face the challenge to define clear, consistent, useful and sensible boundaries
regarding the applicability of requirements to CD.

3.1.2 Fuzziness of Controls

Closely related to the intricacy of the controls is this second challenge namely
the fuzziness of the controls which makes it not only difficult to assess the
applicability with respect to our scope, but it makes it also difficult to
decide which aspects we have to further specify on formulating a functional
requirement and which aspects we let specify our functional requirements.

3.1.3 CD as ISMS

The third challenge is the fact that the ISO 27001 is not designed to serve as
a requirements specification for anything other than a management system.
It explicitly does not specify a technical security approach, however, we apply
the requirements to a technical approach namely CD with the reasoning that
we consider CD to be used as an ISMS.

3.1.4 Helpful Models

Eventually, due to our goal to give organizations not only a bunch of require-
ments, but also a guidance on how to approach the extracted requirements
the last and fourth challenge comprise the creation of models to be used in
practice. Furthermore, we also want to evaluate security in the context of
CD in general.

16

4 Related Work

You are an essential ingredient in
our ongoing effort to reduce
Security Risk.

Kirsten Manthorne

Contents

4.1 DevOpsSec . 17
4.1.1 Hands-On Security in DevOps 18

4.2 Practice of Security Standards 20
4.2.1 ISO 27002 . 20
4.2.2 BSI 200-2 . 21

4.3 Security Development Lifecycle 21
4.4 OWASP SAMM . 22
4.5 Continuous Software Engineering and Agile Methods 22
4.6 Missing Requirements and Models 25

The overall goal of this thesis is to automate security, respectively more specif-
ically to implement as much of the ISO 27001 with the help of CD. Hence,
in the following we deal with topics like DevOpsSec, security frameworks
building upon the ones presented in chapter 2 and continuous security. Fur-
thermore, we deal with the Open Web Application Security Project (OWASP)
Software Assurance Maturity Model (SAMM) as a reference of a security
maturity model.

4.1 DevOpsSec

DevOpsSec is a term which arose in recent years. It exists in different
permutations of dev, sec and ops, but in this thesis we will stick to DevOpsSec.
We introduced DevOps in chapter 2 as a practice which uses CD to reduce the
time between a commit and the deployment to production. Conservatively,
security was paid attention to at the point right before the releasing of
software. With the reduced cycle times, security has to be integrated in the
DevOps process[MCP17].
Myrbakken et al. performed a literature review[MCP17] around the term
DevOpsSec. They suggest that there is a consensus regarding the definition

17

4 Related Work

of DevOpsSec which is seen as[MCP17]:
a necessary expansion to DevOps, where the purpose is to in-

tegrate security controls and processes into the DevOps software
development cycle and that it is done by promoting the collabora-
tion between security teams, development teams and operations
teams.

They also identified practices that characterize DevOps. Those comprise
continuous testing, monitoring and logging, security as code, and red-team
and security drills.
In the following, we give an overview of the view on DevOpsSec of the book
Hands-On Security in DevOps: Ensure continuous security, deployment and
delivery with DevSecOps by Tony Hsu[Hsu18]. We specifically consider it
important related work since it not only deals with security in DevOps, but
also deals with the ISO 27001 in the context of DevOps on which we focus
specifically.

4.1.1 Hands-On Security in DevOps

Tony Hsu introduces several driving forces and challenges for DevOpsSec.
Those comprise security compliance methods such as the ISO 27001, which
involves responsibilities for the DevOps team as shown in Figure 2.4, but also
other security compliance methods like the ones consolidated by the CSA (see
section 2.7). Further drivers and challenges are new technologies like Docker
which introduce new security risks, but also IaC in general which speeds up
application deployment but shifts the responsibility of system security to
the DevOps team[Hsu18]. Finally, speaking of IaC, we already presented
continuous delivery maturity models in section 2.2.1 (for which IaC is e.g.
required at the latest for the intermediate level in the model by Rehn et
al.). Correspondingly, Tony Hsu presents a less comprehensive but more
concrete model for maturity of DevOps practices consisting of the three levels
Continuous Integration, Continuous Delivery and Continuous Deployment.
IaC is required for the continuous delivery level. Higher levels of maturity
of DevOps practices thereby offer the possibility to integrate security in the
build process without changing existing development and to cope with the
challenge of short release cycles which might not allow for a full cycle of
security testing.
Having discussed the motivation for DevOpsSec, Tony Hsu continues with
security goals and metrics. We deal with them here to give an overview of
what the responsibilities of the DevOps team can encompass. He states that
the end goal of security for any organization is to secure customer digital
assets. Aligned with that goal have to be the security goals of all teams in an
organization. In the following, we deal with the development team security

18

4.1 DevOpsSec

goals and the operational team security goals, because of their relation to
DevOps.

Development Goals

The security goal of a development team is to deliver secure design and
implementation.
Based on OWASP SAMM practices, the key aspects to consider during the
development phase comprise threat assessment, security requirements and
security architecture and coding. Additionally, those are reflected by the
deliverables a development team can provide with a self-assessment, namely a
threat modeling analysis report, a secure coding analysis report and a secure
architecture.
Regarding threat assessment, Tony Hsu presents two threat modeling tools,
respectively guidelines which are suggested for the project team, one captioned
with Knowledge-base of threats and mitigation and one Tools or threat modeling
templates. The former one can help the team to decide regarding the most
relevant threats to the project from the knowledge list instead of starting
from zero. As a knowledge base e.g. Common Attack Pattern Enumeration
and Classification (CAPEC) can be used. The latter one enables the team to
deliver consistent quality for threat modeling reports.

Operational goals

As with section 4.1.1, the SAMM allows for a categorization of the key
operational goals. They comprise issue management, environmental hardening
and operational enablement.
Issue management defines how security incidents are handled which is im-
portant for both the DevOps and the Dev team, since they should have a
vulnerability process. National Institute of Standards and Technology (NIST)
SP800-61 might serve as a reference here and introduces different stages for an
incident handling action checklist. Typical security activities during security
incident handling comprise vulnerability received, internal/external communi-
cation, root/cause analysis, mitigation, deployment and verification. All of
those activities involve the DevOps team, e.g. by checking for well-known
Common Vulnerabilities and Exposuress (CVEs) or introducing new firewall
security policies.
Next, environmental hardening should be covered in an organization’s security
policy considering a secure configuration baseline and a constant monitoring
mechanism including definitions on what should be scanned with which tools.
Table 4.1 shows a small overview regarding monitoring.

19

4 Related Work

Areas Purpose Open source tools
CVE To understand if there are

any publicly known vulner-
abilities in the cloud ser-
vices. Refer to https:
//cve.mitre.org/

OpenVAS, NMAP

Integrity monitoring It determines if major
system configuration files
have been tampered with.

OSSEC

Secure configuration com-
pliance

Secure configuration to
meet industry best prac-
tices.

OpenSCAP

Sensitive information expo-
sure

To review whether there
is any personally identifi-
able information, keys, or
secret leakage in the con-
figuration files.

No specific open source
tool in this area. However,
we may define specific reg-
ular expression patterns to
scan the sensitive info.

Table 4.1: Overview of constant monitoring mechanisms (adapted from [Hsu18])

Finally, operational enablement bridges the development team and the DevOps
team. Typical activities e.g. involve packaging deployment to production,
ensuring the integrity of every software release or securing configuration.

4.2 Practice of Security Standards

In section 2.6 we dealt with well-known security standards. In this chapter,
we build upon them by dealing first with the ISO 27002, the code of practice
which belongs to the ISO 27001 and second with the BSI 200-2 which
provides step-by-step guides for the realization of the BSI 200-1 among
others considering the size of the company.

4.2.1 ISO 27002

Based on the ISO 27001, the ISO 27002 provides a reference for organiza-
tions regarding selection of controls within the process of implementing an
ISMS. It is intended to be used in developing an individualized industry-
and organization-specific information security guidelines. Furthermore, its
scope comprises organizations which intend to implement commonly accepted
information security controls[Isoa].

20

https://cve.mitre.org/
https://cve.mitre.org/

4.3 Security Development Lifecycle

The ISO 27002 consists of security control categories. Each of those categories
contain a control objective stating what is to be achieved and one or more
controls that can be applied to achieve the control objective. The descriptions
of the controls consists of the control itself, an implementation guidance
and other information. Thereby, the controls match the ones from the ISO
27001. Besides that, the implementation guidance provides more detailed
information to support the implementation of the control and to meet the
control objective. However, the guidance may not be entirely suitable or even
sufficient in all situations and may not fulfil the organization’s specific control
requirements[Isoa]. Finally, the other information paragraph provides further
information that may be taken into consideration, e.g. legal consideration.
Still, it is important to note that (as the ISO 27001) the ISO 27002 is also
not a technical security approach.

4.2.2 BSI 200-2

Based on the BSI 200-1 (see section 2.6.2), the IT-Grundschutz BSI 200-2
standard is a comprehensive framework for an ISMS and provides step-by-step
guides to develop information security management in practice. Those can
be adapted to the requirements of organizations of various types and sizes
which is implemented via the three methodologies Standard Protection, Basic
Protection and Core Protection[Bsib].

Basic Protection in terms of the BSI 200-2 exists to get a broad and basic initial
safeguard of all relevant business processes. It allows the implementation of
the most important security requirements and can be enhanced by protecting
all areas using Standard Protection or by protecting critical business processes
using Core Protection.

After all, the implementation of the IT-Grundschutz can be certified according
to ISO/IEC 27001, respectively is compatible to the ISO 27001 which means
it also includes recommendations from e.g. the ISO 27002.

4.3 Security Development Lifecycle

The Security Development Lifecycle (SDL) is designed by Microsoft to help
developers build secure software. It is born out of the need of customers
to receive, respectively acquire secure software of their vendors. However,
it is not limited to that, since security also influences reliability, taking e.g.
a security mitigation that protects against denial of service attacks. This
mitigation is also a reliability feature[HL06]. The SDL is proven to increase
security and allowed Microsoft to become or be at least perceived as a security
trendsetter in 2006. Its goals comprise the reduction of the number of security

21

4 Related Work

vulnerabilities and privacy problems and the reduction of the severity of the
remaining vulnerabilities.
Now, the SDL consists out of thirteen stages whom we do not deal with in
detail. Though, to give an overview those comprise Education and Awareness,
Project Inception, Define and Follow Design Best Practices, Product Risk
Assessment, Risk Analysis, Creating Security Documents, Tools, and Best
Practices for Customers, Secure Coding Policies, Secure Testing Policies,
The Security Push, The Final Security Review, Security Response Planning,
Product Release and Security Response Execution.

4.4 OWASP SAMM

The OWASP SAMM is an open framework for organizations to implement a
software security strategy[Sam]. As such it shall always remain vendor-neutral
and freely available for all to use. It categorizes security practices into four
key business functions as shown in Table 4.2, in contrast to the Microsoft
SDL which defines security practices during the development process.
Furthermore, it is defined with flexibility in mind which means that it can be
used by organization of any size using any style of development. The SAMM
is built on the following principles:

• An organization’s behaviour changes slowly over time
• There is no single recipe that works for all organizations
• Guidance related to security activities must be prescriptive

Software security programs should adapt to this first aspect by being specified
in small iterations. Moreover, it should be flexible to allow organizations
to tailor their choices regarding the second aspect. Finally, all steps in
building and assessing an assurance program should be simple, well-defined
and measurable[Sam].
The building blocks of the SAMM are three maturity levels for each of the
twelve security practices (seen in Table 4.2).

4.5 Continuous Software Engineering and Agile
Methods

First in [FS14] Fitzgerald et al. state that in the last two decades, there has
been a widespread recognition that increasing the frequency of certain critical
activities helps to overcome many challenges. This can bee seen with practices
like release early, release often[FS14]. Furthermore, continuous integration
and the recent emphasis on DevOps is given as an example that to eliminate

22

4.5 Continuous Software Engineering and Agile Methods

Business Functions Security Practices
Governance

• Strategy & Metrics
• Policy & Compliance
• Education & Guidance

Construction
• Threat Assessment
• Security Requirements
• Secure Architecture

Verification
• Design Review
• Code Review
• Security Testing

Deployment
• Vulnerability Management
• Environment Hardening
• Operational Enablement

Table 4.2: SAMM Overview with business functions belonging to software development
(adapted from [Sam])

23

4 Related Work

discontinuities between development and deployment the integration has to
be continuous.
Apart from continuous activities which are important for software development
in today’s context like continuous planning, continuous integration, continuous
delivery, continuous verification and testing, continuous use they also identified
continuous security.
Fitzgerald et al. consider the entire software life-cycle and identified three
main sub-phases in which they categorize their activities. Business Strategy
& Planning, Development and Operations.
Continuous security is considered to be situated in the development phase
together with e.g. continuous compliance. The need for continuous security
arises among others from the need for security in projects applying agile
methods in safety critical systems. Originally, agile methods were seen as
being suited only for small projects in non-safety critical contexts. This has
changed in recent times.
Merkow et al.[MR11] defined building blocks for continuous application soft-
ware security. Those comprise Training and Awareness, Reusable Security
APIs, Security Frameworks, Software Security Tools, Security of COTS Soft-
ware, Software Security Incident Management and Continuous Security Test-
ing, Software Security Group, Non-functional Requirements. In the following
we would like to shortly go into detail on the last aspect which has yet to be
covered.
Non-functional requirements are the quality, security and resiliency aspects of
software[MR11]. Merkow et al. suggest to address the issue of non-functional
requirements only showing up in requirements documents when they are
deliberately added by establishing a requirements analysis process that treats
non-functional requirements as equal citizens to functional requirements.
Thereby, the formal Software Security Group should establish processes
to assure that this regularly occurs in order to obtain well defined and
reusable non-functional requirements. For that, agile development with
its user stories is one method for requirements collection that is quickly
applicable and could be used to capture both functional and non-functional
requirements. As of Merkow et al., key non-functional requirements comprise
availability, capacity, efficiency, extensibility, interoperability, manageability,
maintainability, performance,portability, privacy, recoverability, reliability,
scalability, security, and serviceability[MR11].
Another paper which focuses on security in agile development methods is the
case-study Scaling Agile Methods to Regulated Environments: An Industry
Case Study[Fit+13] written by Fitzgerald et al.. More specifically, it evaluates
the suitability of agile methods in regulated environments. Examples for
regulated environments are industries like automotive, aviation, food, medical
devices, etc.. The result of that case-study is that agile is highly suitable when

24

4.6 Missing Requirements and Models

Figure 4.1: R-Scrum: Regulated Scrum implementation out of case study[Fit+13] (copied
from [Fit+13])

tailored to meet the needs of regulated environments and supported with
appropriate tools. The case-study company e.g. switched to an integrated
toolset (Atlassian) which helped significantly to support full end-to-end
traceability which usually is a significant overhead in regulated environments.
Traceability thereby is defined as [Com+90]:

The degree to which a relationship can be established between two
or more products of the development process, especially products
having a predecessor-successor or master-subordinate relationship
to one another; for example, the degree to which the requirements
and design of a given software component match

Moreover, for verification and validation they also found a powerful toolset in
continuous integration as quality enhancing. After all, they termed the new
agile Scrum process for regulated environments R-Scrum which is shown in
Figure 4.1.

4.6 Missing Requirements and Models

We dealt with DevOpsSec in general and Tony Hsu[Hsu18] even dealt with
the ISO 27001 in this context. However, as seen in chapter 2, Tony Hsu
only defines the areas of responsibility of the ISO 27001 sections which is not
enough, since it still requires anyone wanting to implement the ISO 27001
to apply the controls to CD. Furthermore, Tony Hsu does not really exclude
any sections, he just states the sections which lay rather in the responsibility
of the DevOps team and those wo do not.

25

4 Related Work

Regarding DevOpsSec there is nothing close to requirements. There is no
literature extracting functional requirements out of the ISO 27001 for CD.
Tony Hsu only describe goals in the context of DevOpsSec and give approaches
on how to achieve those goals including technical means. However, this is
neither comprehensive nor is it based on the ISO 27001. Furthermore, also
the BSI 200-2, the ISO 27002 or the Microsoft SDL still do not formulate
functional requirements in general, particularly none specific to CD. They
rather define areas of responsibility, respectively building blocks for security
in CD, but nothing fine-granular. The same applies to Merkow et al. even
though they define building blocks for continuous application software security
which is more in the direction of CD. However, it is also not based on the
ISO 27001.
Regarding models, there do not exist any CD specific security-related CD
maturity models or realization roadmaps. Even though the SAMM is, respec-
tively includes a maturity model and one might even consider the SDL to be
a model, both do not specifically consider CD.

26

5 Methodology

Science is fun. Science is curiosity.
We all have natural curiosity.
Science is a process of
investigating. It’s posing
questions and coming up with a
method. It’s delving in.

Sally Ride

Contents

5.1 Scope of Work . 27
5.2 Research Questions . 28

In this chapter, we define the general scope of this work based on chapter 1,
chapter 3 and chapter 4.
We formulate the research questions regarding the problems which will guide
through this thesis and define the artefacts we create in order to answer them.

5.1 Scope of Work

The scope of this work is to deduct functional requirements for the delivery
system based on the controls listed in the ISO 27001. We chose the ISO 27001
because it is the certification our industry partner wants to comply with at
the time of writing. As delivery system, we understand all systems which
are involved in delivering software, however, do not have to be limited to
that. Those comprise systems which we use by means of tools such as the
version control system, the artefact storage, and the pipeline manager, but
also artefacts (systems) which are created or used during this delivery process
like production applications, or test systems, etc..
Furthermore, we give a detailed definition of how we use the terms model,
system and process, based on the definition in section 2.4, to further specify
our understanding of continuous delivery. Moreover, we use those terms to
classify the controls of the ISO 27001.
The process comprises everything which is pre-definable and can be im-
plemented in a process. This also includes aspects which conceptually fit,

27

5 Methodology

respectively can be realized with a continuous delivery process, but which are
currently not realizable in terms of technical realizability.
The model comprises everything which has to be set by the user and can not
be implemented in the process.
The system comprises everything which is required to execute the process.
In section 6.1, we distinguish between applicability, implementability and
functional requirement, which is why we do not consider technical realiz-
ability for any of the terms model, process and system, since they belong to
implementability.

5.2 Research Questions

In the following, we define our research questions in order to define and to
limit the scope of this thesis, but also to give it some structure.

• RQ1: Which aspects of the ISO 27001 are relevant for the Software
Delivery Process, the Software Delivery Model and the Software Delivery
System (see Figure 2.3)? What are the resulting functional requirements?
This research questions is the core of our work and incorporates all
but the last challenge (see section 3.1). We first have to assess the
applicability of every ISO 27001 control to CD. Then we can perform
the assignment to the finer-granular terminology of the term deployment
pipeline: model, process or system. Thereby, we basically assess the
implementability, since we decide where the ISO 27001 control can
conceptually be implemented. Finally, we can formulate functional
requirements for the delivery systems. After all, we do this in the form
of a SoA.

• RQ2: What is the relation of aspects between model, process and system?
Is this in accordance with the ISO 27001? We analyse the number of
aspects which we identified as being related to model, process, or system.
It shows us the relations between those numbers and allows us to discuss
whether they are reasonable which also gives us the possibility to discuss
our assignment. Furthermore, it shows us to which degree the ISO 27001
can be automated which is especially interesting as CD aims for a high
automation degree.

• RQ3: Are there relations, respectively dependencies between the iden-
tified functional requirements? Are there relations, respectively depen-
dencies of the identified requirements to known maturity models for CD
which can be used to derive a security maturity model?
First, we create a realization roadmap. This means we set the functional
requirements in relation to each other based on effort. Second, we

28

5.2 Research Questions

Figure 5.1: Overview of methodology

create a dependency model which shows the dependencies between the
functional requirements. Third, based on the dependency model we then
create a maturity model.
Finally, we create a mapping between our extracted ISO 27001 re-
quirements for CD and the maturity levels of a CD maturity model in
chapter 2. Eventually, we extend an existing maturity model for CD
with our functional requirements.
The aim of this research question is to fulfil our goal to give organizations
not only a list of functional requirements, but also guidance on how
and when to realize them. With the last model, we want to identify
the level of maturity of CD security requires to help organization which
already implement CD evaluate which requirements they can already
integrate in their CD process. Here, we face the fourth challenge (see
section 3.1.4).

• RQ4: Which of those aspects are realizable (at the moment)? How
would one implement them (not only concept)? Can we prioritize them?
As a final research question, we assess each functional requirement which
we got as a result of the SoA (see section 6.1) on realizability. Thereby,
we create a small catalogue containing concrete realization suggestion.
At that, we focus on delivery systems which are used at our industry
partner. This research question shall give an idea of how companies can
technically realize the stated functional requirements.

The complete process, respectively methodology from the ISO 27001 to the
final models can be found in Figure 5.1. At that, the arrows forming a circle
around the person illustrate that this is an iterative process and not a onetime
transformation from the ISO 27001 to the SoA.

29

6 Results

If the staff lacks policy guidance
against which to test decisions,
their decisions will be random.

Donald Rumsfeld

Contents

6.1 Statement of Applicability 31
6.1.1 Reasoning of Applicability of ISO 27001 to CD . . . 32
6.1.2 Resulting SoA 33
6.1.3 Assignment Statistics 60

6.2 Resulting Major Categories 61
6.2.1 1. Access Management 61
6.2.2 2. Logging and Monitoring 62
6.2.3 3. Change Management 63
6.2.4 4. Artefacts and Systems (ONLY internal aspects) . . 63
6.2.5 5. Other Policies/Requirements 64

6.3 Realization Roadmap . 64
6.4 Dependency Model . 68
6.5 Maturity Model . 68
6.6 CD maturity meets CD ISO Maturity Model 71
6.7 Realization Suggestions 73

6.7.1 Environment . 74
6.7.2 1. Access Management 74
6.7.3 2. Logging and Monitoring 76
6.7.4 3. Change Management 78
6.7.5 4. Artefacts and Systems (ONLY internal aspects) . . 80
6.7.6 5. Other Policies/Requirements 82

6.1 Statement of Applicability

In the context of the ISO standards a well-known format regarding the
applicability of controls is the SoA. Basically, the SoA lets an organization
define for each control whether it is considered applicable in that organization
or not. In the latter case, the organization has to give a well-reasoned
explanation.
In the following, we use the format of the SoA to determine and document

31

6 Results

three aspects. First, we also evaluate the applicability of each control with
regard to whether it fits to the idea of CD. At that, we orient ourselves towards
the criteria defined in section 6.1.1. Second, we evaluate the implementability
of an applicable control. With implementability we mean whether it can
be integrated in the process of CD which is implemented with the help of
a delivery system. Therefore, we assign the respective control to the terms
model, process, or system. There might be multiple assignments. Last, if the
control is applicable and implementable, we define the functional requirement
for the delivery system. Therefore, we mainly consider the external view,
hence, we only consider requirements for the delivery system. When we speak
of delivery system, we usually mean the build system (e.g. Jenkins), the
version control system (e.g. Gitlab) and the artefact storage (e.g. Nexus).
Only after that, we also deal with the requirements the artefacts and systems
which are created with the delivery system have to fulfil. Naturally, for all
aspects we assume that CD is perfectly implemented for all projects in order
to be able to state which aspects can be implemented with CD in any way.
Taken into consideration for the realization is among others the ISO 27002
(see section 4.2.1).

6.1.1 Reasoning of Applicability of ISO 27001 to CD

In order to reason the applicability of the controls of the ISO 27001 to CD,
we consider aspects applicable which:

• are supposed to be applied to any kind of software system or require
systems to take part in a process / measure

• induce restrictions on any entity / functionality / other system which is
typically involved in a CD system such as version control systems

• induce restrictions on data which is typically stored, processed or created
in CD systems, like credentials, logs, source code, etc.

• are related to aspects which are already included by the three inclusion
criteria above and not excluded by the two exclusion criteria

In contrast, we consider aspects not applicable which:
• are of a purely organizational nature, e.g. aspects which require guide-
lines, etc.. However, we include aspects which also induce the applica-
tion/implementation of those guidelines

• match the first inclusion criteria above, but do not require a system to
provide something actively, e.g. requiring documentation for all systems
regarding certain aspects or user interactions with a system like regularly
review user access rights, etc.

We might deviate from those general rules, respectively aspects. However, if
we do so and consider some controls not applicable we always give a reasoning.

32

6.1 Statement of Applicability

As a special case we treat aspects which would create infinite recursion, see
example in chapter 3. For them, we do state internal applicability if we
already stated external applicability for the same, respectively similar - due
to the required adaptions for fitting a control for a management system to
a CD system - requirement. However, we do not give any details on the
implementability apart from assigning the aspect to the Process, because
there is no point in doing so without repeating the same requirements of the
external aspect reworded to the internal aspect. So every implementability
cell in the section 6.1 which only states Process represents such a case.
The result of the assessment on applicability can be basically found in sec-
tion 6.1.

6.1.2 Resulting SoA

The following SoA largely recites the ISO 27001[Isob], apart from the As-
signment, Implementability, Functional Requirement andComment
columns. We consider this to be the clearest approach, even though it renders
the table somewhat lengthy. Chapters 7 - Human Resource Security -, 11 -
Physical and Environmental Security - and 15 - Supplier Relationships - are
missing, since we consider them trivially not applicable (in accordance with a
security expert, see Chapter 7).

33

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.5.1.1 -
Policies
for infor-
mation
security

A set of policies for
information security shall be
defined, approved by
management, published and
communicated to employees
and relevant external parties

No, only definition
of policy on organiza-
tional level

No, see external aspect

A.5.1.2 -
Review of
the policies
for infor-
mation
security

The policies for information
security shall be reviewed at
planned intervals or if
significant changes occur to
ensure their continuing
suitability, adequacy and
effectiveness

No, only review of poli-
cies (see A.5.1.1)

No, see external aspect

A.6.1.1 - In-
formation
security
roles and
responsibil-
ities

All information security
responsibilities shall be
defined and allocated

No, only definition of
policies

However, re-
sponsibilities
for the process,
respectively
process steps
and for the
assets like code,
build-tooling,
etc. has to be
defined.

No, see external aspect

A.6.1.2 -
Segrega-
tion of
duties

Conflicting duties and areas of
responsibility shall be
segregated to reduce
opportunities for unauthorized
or unintentional modification
or misuse of the organization’s
assets

No, nothing CD can
provide

For roles and
permissions:
segregation of
responsibilities

No, see external aspect

A.6.1.3
- Con-
tact with
authorities

Appropriate contacts with
relevant authorities shall be
maintained

No, nothing CD can
support or provide

No, see external aspect

34

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.6.1.4 -
Contact
with spe-
cial interest
groups

Appropriate contacts with
special interest groups or
other specialist security
forums and professional
associations shall be
maintained

No, same as A.6.1.3

No, see external aspect

A.6.1.5 - In-
formation
security
in project
manage-
ment

Information security shall be
addressed in project
management, regardless of the
type of the project

Yes Process: has to support
mandatory building blocks in
CD

System should restrict users in
defining the CD process

Also requires
the applica-
tion of every
security re-
quirement
which the CD
system has to
fulfil also for all
built (internal)
artefacts and
systems

Yes Process As a remark,
information se-
curity shall also
be addressed
specifically in
CD (before
realization and
individually for
every organi-
zation) since
it might affect
the very same
which includes
security objec-
tives and risk
management
(e.g. unautho-
rized access,
usage of non-
approved arte-
facts or non-
availability)35

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.6.2.1 -
Mobile
device
policy

A policy and supporting
security measures shall be
adopted to manage the risks
introduced by using mobile
devices

No, has nothing to do
with CD

No, see external aspect

A.6.2.2 -
Telework-
ing

A policy and supporting
security measures shall be
implemented to protect
information accessed,
processed or stored at
teleworking sites

No, delivery system
does not interact with
teleworking sites

No, see external aspect

A.8.1.1 - In-
ventory of
assets

Assets associated with
information and information
processing facilities shall be
identified and an inventory of
these assets shall be drawn up
and maintained

No, continuous deliv-
ery system does involve
assets, however it is suf-
ficient to assess them
manually and on an or-
ganizational level

This should
include soft-
ware tools,
build-nodes,
the pipeline
management
system, infor-
mation etc.

No, see external aspect

A.8.1.2 -
Ownership
of assets

Assets maintained in the
inventory shall be owned

No, see 8.1.1 However, the
definition of
responsibil-
ity influences
the roles and
permissions
assignment

No, see 8.1.1

A.8.1.3 -
Acceptable
use of
assets

Rules for the acceptable use of
information and of assets
associated with information
and information processing
facilities shall be identified,
documented and implemented

No, see 8.1.1

No, see 8.1.1

36

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.8.1.4 -
Return of
assets

All employees and external
party users shall return all of
the organizational assets in
their possession upon
termination of their
employment, contract or
agreement

No, no personnel re-
sponsibility of delivery
system

No, see reasoning of ex-
ternal applicability

A.8.2.1 -
Classifi-
cation of
informa-
tion

Information shall be classified
in terms of legal requirements,
value, criticality and
sensitivity to unauthorised
disclosure of modification

No, requirement does
not require implemen-
tation of classification
(see A.8.2.2)

As with
A.8.1.1, this
is more on an
organizational
level, but
nonetheless
should be done
in general

No, see external aspect

A.8.2.2 -
Labelling
of informa-
tion

An appropriate set of
procedures for information
labelling shall be developed
and implemented in
accordance with the
information classification
scheme adopted by the
organization

No, no explicit la-
belling required,
respectively useful.
Should only be done
on a much higher
level than to classify
every single produced
artefact

The system
could realize
this by forc-
ing the user
to classify
information /
systems which
is created dur-
ing the process
in the model.
This has to
follow the
organizations
classification
scheme which
could be
checked

No, see external aspect

37

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.8.2.3 -
Handling
of assets

Procedures for handling assets
shall be developed and
implemented in accordance
with the information
classification scheme adopted
by the organization

No, see 8.1.1

No, see 8.1.1

A.8.3.1 -
Manage-
ment of
removable
media

Procedures shall be
implemented for the
management of removable
media in accordance with the
classification scheme adopted
by the organization

No, continuous deliv-
ery does not involve re-
movable media

No, see external aspect

A.8.3.2 -
Disposal of
media

Media shall be disposed of
securely when no longer
required, using formal
procedures

No, delivery system in-
volves no media

No, see external aspect

A.8.3.3 -
Physical
media
transfer

Media containing information
shall be protected against
unauthorized access, misuse or
corruption during
transportation

No, delivery system in-
volves no media

No, see external aspect

38

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.9.1.1
- Access
control
policy

An access control policy shall
be established, documented
and reviewed based on
business and information
security requirements

Yes System: Delivery systems need
access control, which comprises
authentication and the im-
plementation of authorization.
Additionally, records of signifi-
cant events concerning use and
management of user identities
should be archived[Isoa]; Pro-
cess: respecting authorization
is responsibility of the process;
Model: Privileged users have
to assign permissions

All delivery systems should use
version control system as only
source of authentication; De-
livery systems should archive
records of significant events
concerning the use and man-
agement of user identities; Per-
missions should be aligned
across all delivery systems via
a mapping. All delivery sys-
tems have to respect authoriza-
tion based on the defined map-
ping and implement it as sole
authorization measure

Is connected to
A.8 in terms of
roles vs access
permissions on
assets

Yes Process NEEDINTINFO
(access control
policy)

A.9.1.2
- Access
to net-
works and
network
services

Users shall only be provided
with access to the network
and network services that they
have been specifically
authorized to use

Yes Process: same as A.9.1.1 only
with special regard to network
services (and with that to the
process)

see A.9.1.1

Yes Process NEEDINTINFO
(access control
policy)

39

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.9.2.1 -
User reg-
istration
and de-
registration

A formal user registration and
de-registration process shall
be implemented to enable
assignment of access rights

Yes System: delivery systems
needs access control and
thus registration and de-
registration; Process: only al-
low unique user IDs, especially
do not allow pseudo-accounts
(shared accounts), respectively
only allow them where they
are necessary for business or
operational reasons[Isoa]

Delegate registration / de-
registration responsibility
to company-wide system
for authentication for (e.g.
Lightweight Directory Access
Protocol (LDAP)), thus ver-
sion control system (which
is used as source of authen-
tication and authorization
information, see A.9.1.1) has
to support this system for
authentication information;
NEEDINTINF (mapping)

Yes Process

A.9.2.2 -
User access
provision-
ing

A formal user access
provisioning process shall be
implemented to assign or
revoke access rights for all
user types to all systems and
services

Yes Process: has to respect map-
ping which basically is the for-
mal user access provisioning
process

See A.9.1.1

Yes Process

A.9.2.3 -
Manage-
ment of
privileged
access
rights

The allocation and use of
privileged access rights shall
be restricted and controlled

Yes Process: see A.9.2.2; System:
should control, respectively log
privileged actions

System should log privileged
actions; System should imple-
ment mapping (see A.9.1.1)

Yes Process

40

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.9.2.4
- Man-
agement
of secret
authen-
tication
informa-
tion of
users

The allocation of secret
authentication information
shall be controlled through a
formal management process

Yes Process: systems (test, devel-
opment, etc.) are created dur-
ing process thus process is re-
sponsible for respective secret
authentication information al-
location. This includes ini-
tial secure temporary secret au-
thentication information which
user’s are forced to change on
first use. Additionally, pro-
cess should not continue prior
of user acknowledging receipt
of that authentication informa-
tion; System: secret authenti-
cation information should be
given to users in a secure man-
ner

System has to implement pro-
cess in this regard, namely cre-
ating temporary secret authen-
tication information before cre-
ating any kind of system, forc-
ing users to change it and ac-
knowledge it before continuing
the process. The temporary
secret authentication informa-
tion should be transferred in
a secure manner to the respec-
tive user

Yes Process

A.9.2.5 -
Review of
user access
rights

Asset owners shall review
users’ access rights at regular
intervals

Yes Process: responsible owners
should be identified and doc-
umented; System: Inform re-
spective owners regularly re-
garding all users’ access rights.
Log changes to privileged ac-
counts

Build system should include
owner information for created
systems and has to provide
functionality to regularly in-
form owners regarding user ac-
cess rights. It has to log
changes to privileged accounts

Use permis-
sion mapping
for owner
information

Yes Process

A.9.2.6 -
Removal or
adjustment
of access
rights

The access rights of all
employees and external party
users to information and
information processing
facilities shall be removed
upon termination of their
employment, contract or
agreement, or adjusted upon
change

Yes System: should disable user ac-
cess in stated circumstances

Delegate this responsibility to
the company-wide authentica-
tion system (e.g. LDAP), see
A.9.2.1

Yes Process

41

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.9.3.1
- Use of
secret
authen-
tication
informa-
tion

Users shall be required to
follow the organization’s
practices in the use of secret
authentication information

Yes Process: is partly responsible
for user’s secret authentication
information for created sys-
tems, thus process has to follow
organization’s practices. Fur-
thermore, it has to force user
to follow organization’s prac-
tices on changing the password
(see A.9.2.4); System: should
keep secret authentication in-
formation confidential and en-
sure proper protection of pass-
words

System has to support process
in creating respective authenti-
cation information and to re-
strict users in creating / us-
ing secret authentication infor-
mation by themselves. Sys-
tem has to keep secret authenti-
cation information confidential
and has to ensure proper pro-
tection of passwords

Realization
could be done
with the help
of a compa-
nies password
guideline; Also
see A.9.2.4

Yes Process

A.9.4.1 -
Informa-
tion access
restriction

Access to information and
application system functions
shall be restricted in
accordance with the access
control policy

Yes Process: has to respect map-
ping (see 9.1.1) which has to
be fine granular enough to rep-
resent this requirement. This
includes separating read, write,
delete, and execute rights and
specifically regarding access to
build tools and created systems

System has to implement
this mapping (see A.9.1.1);
NEEDINTINFO (mapping,
see A.9.1.1)

Yes Process check e.g. test
systems for au-
thentication

A.9.4.2
- Secure
log-on
procedures

Where required by the access
control policy, access to
systems and applications shall
be controlled by a secure
log-on procedure

Yes System: log-on procedure
should be secure. This in-
cludes all aspects of the ISO
27002[Isoa] listed as appendix
in section 6.1.2

System has to implement a
secure log-on procedure by
including the stated require-
ments in section 6.1.2

Yes Process

42

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.9.4.3 -
Password
manage-
ment
system

Password management
systems shall be interactive
and shall ensure quality
passwords

No, delivery systems
perform no password
management, only in-
ternal aspect

Yes Process: has to check artefacts
and created systems whether
they perform password man-
agement and if so, check
whether its interactive

System has to support process
in checking the password man-
agement system

A.9.4.4
- Use of
privileged
utility
programs

The use of utility programs
that might be capable of
overriding system and
application controls shall be
restricted and tightly
controlled

Yes Process: has responsibility to
restrict user in using utility
programs, respectively only al-
lowing users to perform a spec-
ified set of operations. This set
might depend on authorization
level of user; System: has to
log usage of utility programs

System has to support process
in restricting the set of opera-
tions. The system should be
able to restrict the set of oper-
ations based on authorization
levels of the user. The system
has to log all usages of utility
programs

Yes Process One could e.g.
check for util-
ity programs
in created sys-
tems and their
permissions

A.9.4.5
- Access
control to
program
source code

Access to program source code
shall be restricted

Yes Process: all systems but the
version control system should
restrict access to source code
(responsibility of mapping, see
A.9.1.2). Version control sys-
tem itself relies on manually set
permissions

Delivery systems have to imple-
ment authorization based on
mapping (see A.9.1.2)

Yes Process Only affects
artefacts and
systems whose
functionality is
version control

43

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.10.1.1 -
Policy on
the use
of cryp-
tographic
controls

A policy on the use of
cryptographic controls for
protection of information shall
be developed and
implemented

No, only internal as-
pect

Yes Process: force checks on that
policy for every pipeline. Con-
sider the artefacts and systems
which are created

System has to support the
ability to check artefacts and
systems which are created
for cryptographic controls
(based on company policy)
e.g. with compliance testing
applications; NEEDINTINFO
(company policy)

CD could help
by checking
whether only
approved li-
braries and
cryptographic
algorithms
are used or
whether pass-
words and keys
are stored in
plaintext, etc.

A.10.1.2 -
Key man-
agement

A policy on the use,
protection and lifetime of
cryptographic keys shall be
developed and implemented
through their whole lifecycle

No, see 10.1.1

Yes Process: force checks on that
policy for every pipeline. Con-
sider the artefacts and sys-
tems which are created (see
A.10.1.1)

System has to support the abil-
ity to check artefacts and sys-
tems which are created for this
policy (see A.10.1.1); NEED-
INTINFO (company policy)

44

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.12.1.1
- Docu-
mented
operating
procedures

Operating procedures shall be
documented and made
available to all users who need
them

No, only internal as-
pect, since this is not
something the delivery
system can provide

However, the
duty of doc-
umentation
still applies
for all delivery
systems; it is
just not in the
responsibility
of the delivery
system on a
technical level

Yes Process: has to require oper-
ating procedures for systems
which are created; Model: has
to require URL where operat-
ing procedures can be found

System has to support process
in requiring operating proce-
dures. System has to support
operating procedures URL in
model.

A.12.1.2
- Change
manage-
ment

Changes to the organization,
business processes,
information processing
facilities and systems that
affect information security
shall be controlled

Yes Process: has to include for-
mal change procedure which
among others comprises ver-
sioning, testing and informing
on changes. Failing pipelines
should have no effect. There
should be no changes without
version control; System: every-
thing has to be versionable

System has to version source
code, infrastructure as code,
pipeline models, etc.. Sys-
tem has to implement two-man
principle and integrate it in
process which comprises sup-
port for multi-branch pipelines;
System has to support pro-
cess in informing and test-
ing on changes; System has
to support process regarding
pipelines having no effect on
failure; System has to force
that there are no changes with-
out version control. Systems
should be as versionable as pos-
sible

Yes Process

45

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.12.1.3 -
Capacity
manage-
ment

The use of resources shall be
monitored, tuned and
projections made of future
capacity requirements to
ensure the required system
performance

Yes System: has to monitor cre-
ated systems. It also has to
delete obsolete data

Pipeline management system
has to monitor created systems.
All delivery systems have to in-
clude self-cleaning (disk space)
capabilities

Yes Process

A.12.1.4 -
Separation
of devel-
opment,
testing and
operational
environ-
ments

Development, testing, and
operational environments shall
be separated to reduce the
risks of unauthorized access or
changes to the operational
environment

Yes Process: release jobs should
have audit logs. Process has to
force the separation of develop-
ment, testing and operational
environments. Changes should
be tested on testing or stag-
ing environments before being
rolled out on operational en-
vironments. This has to fol-
low rules of transfer from de-
velopment to operational envi-
ronments

System has to support process
in providing audit logs for re-
lease jobs. System has to sup-
port process in enforcing sepa-
ration

Yes Process

A.12.2.1 -
Controls
against
malware

Detection, prevention and
recovery controls to protect
against malware shall be
implemented, combined with
appropriate user awareness

Yes System: Apart from only al-
lowing artefacts from internal
repository manager, one may
also allow whitelisted autho-
rized web repositories;

System has to support restrict-
ing access to web reposito-
ries based on whitelists, respec-
tively only allowing to use the
internal repository manager

Yes Process: has to include manda-
tory malware checks both for
dependencies and for created
systems. It has to force virus
scanners on created systems

System has to provide malware
scanners which process can use.
System has to support process
in forcing virus scanners on cre-
ated systems

46

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.12.3.1
- Infor-
mation
backup

Backup copies of information,
software and system images
shall be taken and tested
regularly in accordance with
an agreed backup policy

Yes System: delivery system has to
ease the creation of backups

System has to easy the creation
of backups

Backups are
not the re-
sponsibility of
the delivery
systems, how-
ever it has to
easy its cre-
ation e.g. by
pushing all de-
ployed images
to a central
repository

Yes Process

A.12.4.1
- Event
logging

Event logs recording user
activities, exceptions, faults
and information security
events shall be produced, kept
and regularly reviewed

Yes System: log respective aspects
(see section 6.1.2)

System has to log respective as-
pects

Yes Process checking for
logging de-
pendencies
or logging
interfaces

A.12.4.2 -
Protection
of log infor-
mation

Logging facilities and log
information shall be protected
against tampering and
unauthorized access

Yes Process: restricting access to
log information has to be sup-
ported (and included in map-
ping, see A.9.1.1); System: has
to prevent tampering of logs

All delivery systems have to
protect log information against
tampering. All delivery sys-
tems have to implement autho-
rization based on permission
mapping (as in A.9.1.2)

Yes Process

A.12.4.3 -
Adminis-
trator and
operator
logs

System administrator and
system operator activities
shall be logged and the logs
protected and regularly
reviewed

Yes System: log operator activities
and protect them also

All delivery systems have to log
operator activities and protect
them also (see A.12.4.2)

Yes Process

47

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.12.4.4
- Clock
synchroni-
sation

The clocks of all relevant
information processing
systems within an
organization or security
domain shall be synchronised
to a single reference time
source

Yes System: delivery systems
should be synchronised to
single reference time source

All delivery systems have to
be synchronised to single refer-
ence time source

Yes Process

A.12.5.1
- Instal-
lation of
software on
operational
systems

Procedures shall be
implemented to control the
installation of software on
operational systems

Yes System: everything including
pipeline runs should be ver-
sioned (see A.12.1.2); Process:
Artefacts which are released
should be able to be linked to
the pipeline run

Delivery systems have to ver-
sion everything (see A.12.1.2)
including pipeline runs.
Pipeline runs have to be asso-
ciated with the exact release
name of an artefact

Yes Process: has to restrict, re-
spectively control installation
of software on created opera-
tional systems

System has to support process
in restricting this

We again need
defined alloca-
tion of permis-
sions

A.12.6.1 -
Manage-
ment of
technical
vulnerabili-
ties

Information about technical
vulnerabilities of information
systems being used shall be
obtained in a timely fashion,
the organization’s exposure to
such vulnerabilities evaluated
and appropriate measures
taken to address the
associated risk

No, only internal as-
pect

Yes Process: include mandatory
vulnerability analyses in the
build of every software

System has to support respec-
tive scanners (like OWASP
Dependency Check) and have
them mandatorily integrated
into pipelines

A.12.6.2
- Restric-
tions on
software
installation

Rules governing the
installation of software by
users shall be established and
implemented

No, only internal as-
pect

Yes Process: has to restrict soft-
ware which can be installed

System has to support process
in restricting this

48

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.12.7.1
- Infor-
mation
systems au-
dit controls

Audit requirements and
activities involving verification
of operational systems shall be
carefully planned and agreed
to minimise disruptions to
business processes

No, audit planning is
not in the scope of CD

No, see external re-
quirement

A.13.1.1 -
Network
controls

Networks shall be managed
and controlled to protect
information in systems and
applications

No, network is not re-
sponsibility of CD

No, see external re-
quirement

A.13.1.2
- Security
of network
services

Security mechanisms, service
levels and management
requirements of all network
services shall be identified and
included in network services
agreements, whether these
services are provided in-house
or outsourced

No, see A.13.1.1

No, see external re-
quirement

A.13.1.3
- Segre-
gation in
networks

Groups of information
services, users and
information systems shall be
segregated on networks

No, see A.13.1.1 However, CD
should be
separated
network-wise.
Also sepa-
rate test- /
demo-systems.

No, see A.13.1.1

A.13.2.1
- Infor-
mation
transfer
policies
and proce-
dures

Formal transfer policies,
procedures and controls shall
be in place to protect the
transfer of information
through the use of all types of
communication facilities

Yes System, Process: have to
support secure communication
and follow those procedures

System has to allow for secure
communication and has to sup-
port process

Yes Process

49

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.13.2.2
- Agree-
ments
on infor-
mation
transfer

Agreements shall address the
secure transfer of business
information between the
organization and external
parties

No, requirement only
relevant for agreements

No, see external re-
quirement

A.13.2.3 -
Electronic
messaging

Information involved in
electronic messaging shall be
appropriately protected

Yes System: whitelist allowed ex-
ternal communication. Pro-
tect allowed external communi-
cation

Delivery systems have to be
able to function without ex-
ternal communication, respec-
tively allow whitelisting of ex-
ternal communication which
then should be appropriately
protected

Yes Process: ensure that created
systems appropriately protect
electronic messages; Model:
user has to specify allowed ex-
ternal communication

System has to enforce user
specified whitelist with a fire-
wall based on Internet Proto-
col (IP) addresses or with a
proxy based on domain names,
respectively Uniform Resource
Locators (URLs). System
should only allow Transport
Layer Security (TLS) connec-
tions.

A.13.2.4
- Confi-
dentiality
or non-
disclosure
agreements

Requirements for
confidentiality or
non-disclosure agreements
reflecting the organization’s
needs for the protection of
information shall be identified,
regularly reviewed and
documented

No, requirement only
relevant for those agree-
ments

No, see external re-
quirement

50

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.14.1.1
- Infor-
mation
security re-
quirements
analysis
and specifi-
cation

The information security
related requirements shall be
included in the requirements
for new information systems
or enhancements to existing
information systems

No, only internal as-
pect

Yes Process: ensures that all in-
formation security related re-
quirements are always included
/ checked for all created sys-
tems

System has to support process
in checking this, respectively
implement checking functional-
ity

Should be done
once for CD

A.14.1.2 -
Securing
application
services
on public
networks

Information involved in
application services passing
over public networks shall be
protected from fraudulent
activity, contract dispute and
unauthorized disclosure and
modification

No, same as A.14.1.1

Yes Process: check for protection
of respective information

Support process in checking
protection of information in-
volved in application services
passing over public networks

A.14.1.3 -
Protection
application
services
transac-
tions

Information involved in
application service
transactions shall be protected
to prevent incomplete
transmission, mis-routing,
unauthorized message
alteration, unauthorized
disclosure, unauthorized
message duplication or replay

No, only internal as-
pect

Yes Process: check for protection
of information involved in ap-
plication service transactions

System has to support process
in checking protection of infor-
mation involved in application
service transactions

51

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.14.2.1 -
Secure de-
velopment
policy

Rules for the development of
software and systems shall be
established and applied to
developments within the
organization

Yes Process: all systems should
communicate with version con-
trol system in a secure man-
nerISO 27002 [Isoa]; System:
ISO 27002 states security in
the version control system,
especially considering secure
repositories

System has to support process
in communicating with version
control system in a secure man-
ner as well as ensuring that the
version control system is secure
including its repositories

Yes Process: has to enforce those
rules on created systems and
artefacts

Support process in enforcing
rules regarding development of
software and systems

A.14.2.2
- System
change
control
procedures

Changes to systems within the
development lifecycle shall be
controlled by the use of formal
change control procedures

Yes Process: has to integrate re-
view steps. Process should
check whether every commit is
associated with a case / ticket

System has to support process
in forcing review steps. System
has to support process in check-
ing whether every commit is as-
sociated with a case / ticket

No, only external as-
pect

A.14.2.3 -
Technical
review of
applica-
tions after
operating
platform
changes

When operating platforms are
changed, business critical
applications shall be reviewed
and tested to ensure there is
no adverse impact on
organizational operations or
security

Yes Process: on operating platform
changes, pipelines should be
triggered and all tests should
be run again

System has to support trigger-
ing of pipelines in general and
especially should support trig-
gers based on operating plat-
form changes

Yes Process

A.14.2.4
- Restric-
tions on
changes to
software
packages

Modifications to software
packages shall be discouraged,
limited to necessary changes
and all changes shall be
strictly controlled

Yes System: should monitor modi-
fications to 3rd party software

Delivery systems have to mon-
itor the use of modified 3rd
party software

Yes Process

52

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.14.2.5
- Secure
system
engineering
principles

Principles for engineering
secure systems shall be
established, documented,
maintained and applied to any
information system
implementation efforts

No, only internal as-
pect

Yes Process: has to integrate
checks in order to ensure that
created systems comply with
those principles

System has to support process
in checking this, respectively
implement checking functional-
ity

A.14.2.6 -
Secure de-
velopment
environ-
ment

Organizations shall establish
and appropriately protect
secure development
environments for system
development and integration
efforts that cover the entire
system development lifecycle

No, development envi-
ronment is not respon-
sibility of delivery sys-
tem

However, has
to be also con-
sidered for CD
itself; however,
this is nothing
the delivery
system has to
provide

No, see external reason-
ing including comment

A.14.2.7 -
Outsourced
develop-
ment

The organization shall
supervise and monitor the
activity of outsourced system
development

Yes Process: same measures which
are applied for internal devel-
opment should be applied to
outsourced development. If
this is not possible, the use
of external artefacts should be
closely monitored

System has to support monitor-
ing of external artefacts.

Yes Process

A.14.2.8
- System
security
testing

Testing of security
functionality shall be carried
out during development

No, only internal as-
pect

Yes Process: has to include tests,
respectively verify the exis-
tence of tests on security func-
tionality

System has to support process
in checking for security func-
tionality tests

53

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.14.2.9
- System
acceptance
testing

Acceptance testing programs
and related criteria shall be
established for new
information systems, upgrades
and new versions

No, only internal as-
pect

Yes Process: has to enforce accep-
tance testing programs and re-
lated criteria

System has to support process
in enforcing acceptance testing
programs and related criteria

also for out-
sourced devel-
opment (see
A.14.2.7)

A.14.3.1 -
Protection
of test data

Test data shall be selected
carefully, protected and
controlled

No, delivery system
has no influence on test
data selection

No, see external aspect Since every
created system
restricts al-
lowed outgoing
connections,
user has to ex-
plicitly specify
test data if it is
gathered from
an external
resource

A.16.1.1 -
Responsi-
bilities and
procedures

Management responsibilities
and procedures shall be
established to ensure a quick,
effective and orderly response
to information security
incidents

No, delivery system
is not responsible for
management proce-
dures

It is part of
them and has
to support
them though

No, see external aspect

A.16.1.2 -
Reporting
infor-
mation
security
events

Information security events
shall be reported through
appropriate management
channels as quickly as possible

Yes Process: report respective
events

System has to support process
in reporting respective events
(e.g. style checks, cryptogra-
phy, use of libraries) to man-
agement

Events to be
considered
comprise unau-
thorized access,
discovery of
vulnerabilities,
plain text
passwords

Yes Process

54

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.16.1.3 -
Reporting
infor-
mation
security
weaknesses

Employees and contractors
using the organization’s
information systems and
services shall be required to
note and report any observed
or suspected information
security weaknesses in systems
or services

No, delivery system
has no personnel re-
sponsibility

No, see external re-
quirement

A.16.1.4 -
Assessment
of and
decision
on infor-
mation
security
events

Information security events
shall be assessed and it shall
be decided if they are to be
classified as information
security incidents

Yes Process: has to assess security
events based on defined metrics
in order to classify them

System has to support assess-
ment of security events

Yes Process

A.16.1.5 -
Response
to infor-
mation
security
incidents

Information security incidents
shall be responded to in
accordance with the
documented procedures

No, impossible for de-
livery system to detect
incident

Procedure
have to be
documented
though

No, see external aspect

A.16.1.6 -
Learning
from in-
formation
security
incidents

Knowledge gained from
analysing and resolving
information security incidents
shall be used to reduce the
likelihood or impact of future
incidents

No, see A.16.1.5

No, see external re-
quirement

55

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.16.1.7 -
Collection
of evidence

The organization shall define
and apply procedures for the
identification, collection,
acquisition and preservation of
information, which can serve
as evidence

Yes Process: has to log everything,
especially everything related to
security incidents

System has to support this
comprehensive logging

Yes Process

A.17.1.1 -
Planning
infor-
mation
security
continuity

The organization shall
determine its requirements for
information security and the
continuity of information
security management in
adverse situations, e.g. during
a crisis or disaster

No, only policy

No, see external aspect

A.17.1.2
- Imple-
menting in-
formation
security
continuity

The organization shall
establish, document,
implement and maintain
processes, procedures and
controls to ensure the required
level of continuity for
information security during an
adverse situation

No, delivery system is
not specifically respon-
sible in adverse situa-
tions

No, see external aspect

A.17.1.3
- Verify,
review and
evaluate in-
formation
security
continuity

The organization shall verify
the established and
implemented information
security continuity controls at
regular intervals in order to
ensure that they are valid and
effective during adverse
situations

No, delivery system
has no specific respon-
sibility regarding ad-
verse situations

No, see external aspect

A.17.2.1 -
Availability
of infor-
mation
processing
facilities

Information processing
facilities shall be implemented
with redundancy sufficient to
meet availability requirements

Yes System: delivery systems shall
be redundant

Systems have to be able to be
run redundant

However, avail-
ability require-
ments have to
be checked be-
fore

Yes Process

56

6.1
Statem

ent
ofA

pplicability
ID Control Applicability Implementability Functional Requirement Comment

A.18.1.1
- Identifi-
cation of
applicable
legislation
and con-
tractual
require-
ments

All relevant legislative
statutory, regulatory,
contractual requirements and
the organization’s approach to
meet these requirements shall
be explicitly identified,
documented and kept up to
date for each information
system and the organization

No, not the responsibil-
ity of the delivery sys-
tem

No, see external aspect

A.18.1.2 -
Intellectual
property
rights

Appropriate procedures shall
be implemented to ensure
compliance with legislative,
regulatory and contractual
requirements related to
intellectual property rights
and use of proprietary
software products

No, only internal as-
pect

Yes Process: has to integrate
respective scanners to ensure
compliance with legislative,
regulatory and contractual
requirements

System has to support process
in ensuring compliance with
legislative, regulatory and con-
tractual requirements

A.18.1.3 -
Protection
of records

Records shall be protected
from loss, destruction,
falsification, unauthorized
access and unauthorized
release, in accordance with
legislatory, regulatory,
contractual and business
requirements

Yes System: has to deal with
preservation of records

System has to protect records
from loss, destruction, falsifica-
tion, unauthorized access and
unauthorized release

Yes Process

A.18.1.4
- Privacy
and pro-
tection of
personally
identifiable
informa-
tion

Privacy and protection of
personally identifiable
information shall be ensured
as required in relevant
legislation and regulation
where applicable

Yes System, Process: every action
in CD is personally identifiable
information and have to be pro-
tected

System has to protect and sup-
port process in protecting logs
of actions of delivery systems

Additionally,
after a certain
period of time,
this informa-
tion has to be
anonymized

Yes Process

57

6
R

esults

ID Control Applicability Implementability Functional Requirement Comment

A.18.1.5 -
Regulation
of cryp-
tographic
controls

Cryptographic controls shall
be used in compliance with all
relevant agreements,
legislation and regulations

No, delivery system
has no responsibility
over cryptographic con-
trols; it can only imple-
ment them

No, see external aspect

A.18.2.1 -
Indepen-
dent review
of infor-
mation
security

The organization’s approach
to managing information
security and its
implementation (i.e. control
objectives, controls, policies,
processes and procedures for
information security) shall be
reviewed independently at
planned intervals or when
significant changes occur

No, requires human in-
teraction

No, see external aspect

A.18.2.2
- Compli-
ance with
security
policies
and stan-
dards

Managers shall regularly
review the compliance of
information processing and
procedures within their area
of responsibility with the
appropriate security policies,
standards and any other
security requirements

No, delivery system
has no personnel re-
sponsibility

No, see external aspect

A.18.2.3 -
Technical
compliance
review

Information systems shall be
regularly reviewed for
compliance with the
organization’s information
security policies and standards

No, this is more on an
organizational level

No, see external aspect

58

6.1 Statement of Applicability

Appendix for A.9.4.2

• not display system or application identifiers until the log-on process has
been successfully completed

• display a general notice warning that the computer should only be
accessed by authorized users

• not provide help messages during the log-on procedure that would aid
an unauthorized user

• validate the log-on information only on completion of all input data. If
an error condition arises, the system should not indicate which part of
the data is correct or incorrect

• protect against brute force log-on attempts
• log unsuccessful and successful attempts
• raise a security event if a potential attempted or successful breach of
log-on controls is detected

• display the following information on completion of a successful log-on:
• not display a password being entered
• not transmit passwords in clear text over a network
• terminate inactive sessions after a defined period of inactivity, espe-

cially in high risk locations such as public or external areas outside the
organization’s security management or on mobile devices

• restrict connection times to provide additional security for high-risk
applications and reduce the window of opportunity for unauthorized
access. Distinguish between interactive and automatic sessions

Appendix for A.12.4.1

Event logs should include, when relevant:
• user IDs
• system activities
• dates, times and details of key events, e.g. log-on and log-off
• device identify or location if possible and system identifier
• records of successful and rejected system access attempts
• records of successful and rejected data and other resource access attempts
• changes to system configuration
• use of privileges
• use of system utilities and applications

59

6 Results

• files accessed and the kind of access
• network addresses and protocols
• alarms raised by the access control system
• activation and de-activation of protection systems, such as anti-virus

systems and detection systems
• records of transactions executed by users in applications

6.1.3 Assignment Statistics

Table 6.2 shows basically two important information. The first one is the
number of applicable controls in contrast to the number of total controls per
chapter. The second one is the number of assignments to model, process
or system. We mainly consider the external aspects and put the numbers
regarding the internal aspects in brackets. With externally and internally
we refer to the requirements the delivery systems have to fulfil and the
requirements the artefacts and systems have to fulfil. There might be multiple
assignments per control.

Section Number of Controls Applicable Model Process System
5 2 0 (0) 0 (0) 0 (0) 0 (0)
6 7 1 (1) 0 (0) 1 (1) 0 (0)
7 6 0 (0) 0 (0) 0 (0) 0 (0)
8 10 0 (0) 0 (0) 0 (0) 0 (0)
9 14 13 (14) 1 (0) 11 (14) 8 (0)
10 2 0 (2) 0 (0) 0 (2) 0 (0)
11 15 0 (0) 0 (0) 0 (0) 0 (0)
12 14 10 (13) 0 (1) 4 (13) 9 (0)
13 7 2 (2) 0 (1) 1 (2) 2 (0)
14 13 5 (10) 0 (0) 4 (10) 2 (0)
15 5 0 (0) 0 (0) 0 (0) 0 (0)
16 7 3 (3) 0 (0) 3 (3) 0 (0)
17 4 1 (1) 0 (0) 0 (1) 1 (0)
18 8 2 (3) 0 (0) 1 (3) 2 (0)
All / Total 114 37 (49) 1 (2) 25 (49) 24 (0)

Table 6.2: Number of applicable controls of ISO 27001 (27002) with assignment to model,
system or process

The first thing we can observe is that there are only three model related
requirements in total. Regarding the relation between process-related and

60

6.2 Resulting Major Categories

system-related requirements, we see that there are 25 external process-related
requirements versus 24 external system-related requirements which means
they are quite balanced. For the internal view, we have no system-related
requirements, but 49 process-related requirements.
Other than that, of the 114 controls of the ISO, 37 are applicable externally
and 49 internally. Thus, all internally applicable aspects are process-related,
where two of them also require user-input in form of them also being model-
related. In contrast to that, the 37 externally applicable aspects have more
overlapping assignments, since there are 49 assignments to process or system.
We mentioned that one can see that there is no direct responsibility of
the system for any of the requirements imposed for artefacts and systems.
However, as seen in section 6.4, internal requirements may have dependencies
to requirements which are the responsibility of the system.

6.2 Resulting Major Categories

Based on the results and concepts of section 6.1, we identified the following
major categories (subsections) regarding the ISO 27001 which a delivery
system can or has to implement, respectively realize in order to fulfil the ISO
27001. For each category, we list the major concepts (functional requirements)
which have to be realized in that category. Those major concepts are based
on the detailed aspects of the SoA (see section 6.1.). Notably, we summarize
aspects and also omit some concepts which we identified as trivial functional
requirements in order to gain an overview of concepts in every category. The
result is basically a summary of the concepts in section 6.1 assigned to the
categories we identified. To have better traceability and since the following
requirements are the basis of our models, we annotated all those requirements
with a letter whose related control has multiple different requirements.
The following catalogue raises no claim to completeness, every single require-
ment can be found in the SoA (see section 6.1). Furthermore, the category
names resemble or are identical to sections of the ISO 27001, however, they
do not necessary deal with the aspects which are listed under the respective
sections in the ISO 27001.
Based on these major categories, we can - for the realization concepts in these
categories - apply them to a varying extend which is shown the realization
roadmap in section 6.3.

6.2.1 1. Access Management

• A.9.1.1(a) - use of version control system as source of authentication
(credentials) for rest of delivery system

61

6 Results

• A.9.1.1(b), A.9.1.2, A.9.2.2, A.9.2.3(a), A.9.4.1, A.9.4.5, 12.4.2(a) - user
authentication information mapping between version control system and
rest of delivery system

• A.9.2.1 - version control system has to support authentication via
company-wide system for authentication (e.g. LDAP)

• A.9.2.4 - temporary secret authentication information for created systems
including forcing the user to change and acknowledge it

• A.9.2.5(a) - owner information for created systems and regularly inform
them about user access rights

• A.9.3.1(a) - creation of authentication information according to company
policies and forcing users changing it to follow company policies

• A.9.3.1(b) - ensure proper protection of passwords and keep authentica-
tion information confidential

• A.9.4.2 - functional requirements regarding the detailed implementation
of the access management (login) system

• A.9.4.4(a) - System has to support restricting modifications of the process
based on authorization levels

• A.12.2.1(a) - software only through internal artefact storage, respectively
whitelisted web repositories

• A.13.2.3(a) - whitelist and protect allowed external communication

6.2.2 2. Logging and Monitoring

• A.9.1.1(c) - log significant events concerning the use and management
of user identities

• A.9.2.3(b) - log privileged actions
• A.9.2.5(b) - log changes to privileged accounts
• A.9.4.4(b) - log all usages of utility programs
• A.12.1.3(a) - monitoring of created systems
• A.12.1.4(a) - release jobs should have audit log
• A.12.4.1 - log all aspects stated in A.12.4.1
• A.12.4.2(b), A.12.4.3(a) - Protect log against alterations, deletion, etc.;

also consider possible manipulation by privileged users
• A.12.4.3(b) - log operator activities
• A.14.2.4 - monitoring of the use of modified 3rd party software
• A.14.2.7 - monitoring of external artefacts
• A.16.1.2 - report information security events, e.g. access violations, etc.
• A.16.1.7 - log everything
• A.18.1.3 - protection of records (loss, destruction, etc.)
• A.18.1.4 - protection of personally identifiable information in activity

logs

62

6.2 Resulting Major Categories

6.2.3 3. Change Management

• A.12.1.2(a) - deal with failing pipelines in a respective manner (no
deployment, etc.)

• A.12.1.2(b) - multiple branches support for e.g. separate release jobs
including forcing of two-man principle

• A.12.1.2(c), A.12.5.1(a) - no changes without version control: version
everything including pipeline runs, models, system configuration

• A.12.1.2(d), A.14.2.3 - support triggering of pipelines (testing and in-
forming) on changes to pipelines, code, operating platform changes

• A.12.1.2(e) - Systems shall be as versionable as possible
• A.12.1.4(b) - force separation of development, testing and operational
environments

• A.12.1.4(c) - rules for transfer of software from development to opera-
tional status

• A.12.1.4(d) - changes to operational systems should be tested first in a
testing or staging environment

• A.12.5.1(b) - release pipeline runs have to be associated with the exact
release name of an artefact

• A.14.2.2(a) - integrate review steps
• A.14.2.2(b) - check whether every commit is linked to case

6.2.4 4. Artefacts and Systems (ONLY internal aspects)

• A.10.1.1, A.10.1.2 - checks regarding cryptographic policies including
key management, etc.

• A.12.1.1 - require operating procedures (by specifying URL)
• A.12.2.1(b) - integrate malware checks for dependencies and created
systems

• A.12.2.1(c) - force virus scanners on created systems
• A.12.5.1(c) - control installation of software on operational systems
• A.12.6.1 - mandatory vulnerability analyses for every software build
• A.13.2.3(b) - ensure that created systems appropriately protect electronic
messages

• A.14.1.1 - ensure that all information security related requirements are
always checked for all create systems

• A.14.1.2 - check for protection of information involved in application
services passing over public networks

• A.14.1.3 - check for protection of information involved in application
service transactions

• A.14.2.1(a) - checks for secure coding guideline compliance
• A.14.2.5 - obey principles of secure system engineering
• A.14.2.8 - tests for security functionality
• A.14.2.9 - enforce acceptance testing

63

6 Results

• A.18.1.2 - ensure compliance with legislative, regulatory and contractual
requirements

6.2.5 5. Other Policies/Requirements

• A.6.1.5 - mandatory building blocks in CD process, as well as restrictions
for users

• A.12.1.3(b) - deletion of obsolete data, e.g. old snapshots, build data,
etc.

• A.12.3.1 - ease creation of backups
• A.12.4.4 - clock synchronisation
• A.13.2.1 - support, respectively allow secure communication
• A.14.2.1(b) - security in the version control including secure communica-

tion with version control system and secure repositories
• A.16.1.4 - assessment of security events
• A.17.2.1 - delivery system should be redundant

6.3 Realization Roadmap

In section 6.2, we created 5 categories with all requirements. Based on those
requirements and categories, we create the following realization roadmap.

First, we introduce three levels. The levels are ordered according to the effort
the aspects contained in them require to be implemented. They range from
minimal effort over medium effort to high effort.

Each of the aspects in section 6.2 can be assigned to one or (by splitting
them) more levels and we further abstract them to fit into the model. For
reasons of clarity and visibility, we split the model by columns hence having
five tables (see Table 6.3, Table 6.4, Table 6.5, Table 6.6, Table 6.7).

The category 3. Change Management is quite closely related to CD and thus
is somewhat aligned to it, meaning that the level of automation required
increases per required level of effort.

64

6.3 Realization Roadmap

Levels / Areas 1. Access Management
High effort System Access:

• A.9.2.4, 9.3.1(a)
• A.9.2.5(a)
• A.9.3.1(b)
• A.9.4.2
• A.9.4.4(a)

Medium effort Authorization:
• A.9.1.1(b), A.9.1.2, A.9.2.2,
A.9.2.3(a), A.9.4.1, A.9.4.5, 12.4.2(a)

• A.12.2.1(a)
• A.13.2.3(a)

Minimal effort Authentication:
• A.9.1.1(a)
• A.9.2.1

Table 6.3: Realization roadmap Access Management

Levels / Areas 2. Logging and Monitoring
High effort Protection:

• A.12.4.2(b), A.12.4.3(a), A.18.1.3
• A.18.1.4

Medium effort Reporting:
• A.16.1.2
• A.12.1.4(a)

Minimal effort Information:
• A.9.1.1(c), A.9.2.3(b), A.9.2.5(b),
A.9.4.4(b), A.12.4.1, A.12.4.3(b),
A.16.1.7

• A.12.1.3(a)
• A.14.2.4
• A.14.2.7

Table 6.4: Realization roadmap Logging and Monitoring

65

6 Results

Levels / Areas 3. Change Management
High effort System-reliant change management:

• A.12.1.2(d), A.14.2.3
• A.12.1.2(e)

Medium effort Process-reliant change management:
• A.12.1.2(a)
• A.12.1.2(b)
• A.12.5.1(b)
• A.14.2.2(a)
• A.14.2.2(b)
• A.12.1.4(b)
• A.12.1.4(c)
• A.12.1.4(d)

Minimal effort Minimal change management:
• A.12.1.2(c), A.12.5.1(a)

Table 6.5: Realization Roadmap Change Management

66

6.3 Realization Roadmap

Levels / Areas 4. Artefacts and Systems
High effort Harder automatable process steps:

• A.12.5.1(c)
• A.14.2.8
• A.14.2.9
• A.18.1.2

Medium effort Easily automatable process steps:
• A.12.1.1
• A.12.2.1(c)

Minimal effort Scanners:
• A.10.1.1, A.10.1.2
• A.12.2.1(b)
• A.12.6.1
• A.13.2.3(b)
• A.14.1.1
• A.14.1.2
• A.14.1.3
• A.14.2.1(a)
• A.14.2.5

Table 6.6: Realization Roadmap Artefacts and Systems

Levels / Areas 5. Other Policies
High effort

• A.6.1.5
• A.13.2.1
• A.16.1.4

Medium effort
• A.12.1.3(b)
• A.14.2.1(b)
• A.17.2.1

Minimal effort
• A.12.3.1
• A.12.4.4

Table 6.7: Realization Roadmap Other Policies

67

6 Results

6.4 Dependency Model

In order to be able to prioritize single controls and to get a roadmap not only
based on estimated effort (see section 6.3), we created a dependency model
shown in Figure 6.1.
It consists out of all requirements which can be found in section 6.2. Every
requirement which depends on another requirement has an outgoing arrow
to the respective requirement. Thereby, a requirement A depends on a
requirement B if requirement B has to be realized before requirement A
can be realized. Additionally, the requirements are coloured according to
their assignment in the SoA. If a requirement has multiple assignments it is
coloured with both colours (see legend). Moreover, there are two different
kind of arrow lines. Dashed arrow lines and solid arrow lines. The solid
arrow lines describe a dependency relation where all requirements the arrow
points to have to be fulfilled before the other one can be realized. In contrast,
dashed lines mean that only one of the requirements the dashed arrow points
to has to be realized.
In order to group the requirements and to keep the model clear, we adopted
the categories identified in section 6.2. Additionally, this grouping clearly
shows all internal aspects as they can all be found in 4. Artefacts and Systems.
We shortly discuss this assessment in the context of the resulting maturity
model (see section 6.5) in section 7.3.
All in all, we can see that there are only 5 inter-category dependencies from
which four of them depend on requirement A.6.1.5. Other than that, category
one and two have the most intra-category dependencies.

6.5 Maturity Model

In accordance with our goal to provide means for a company to strategically
implement the ISO 27001, we created a maturity model on the basis of our
dependency model (see section 6.4). This means that every maturity level
above the first one requires some control(s) in the lower maturity level to
be fulfilled which happens to be one characteristic of a maturity model. We
basically extracted the different hierarchies of the dependency model into this
maturity model.
The result is shown in Figure 6.2. It consists out of three maturity levels.
The lowest level is the System-oriented level meaning all aspects require some
actions in the system. The next level is the System-dependent level where
the majority of requirements are system related requirements and require
adaptions to the system. Finally, the highest level is the Process-oriented
level where most aspects require adaptions to the process.

68

6.5 Maturity Model

Figure 6.1: Dependencies between requirements of ISO 27001

69

6 Results

Figure 6.2: Maturity model as result of dependency model

70

6.6 CD maturity meets CD ISO Maturity Model

A discussion of our maturity model can be found in chapter 7.

6.6 CD maturity meets CD ISO Maturity Model

In this section, we deal with the mapping of our maturity model from sec-
tion 6.5 to the CD maturity model shown in Figure 2.1, respectively sec-
tion 2.2.1. For this mapping, we take every single requirement listed in
section 6.2 and assign it to a cell of the maturity model shown in Figure 2.1.
Therefore, if multiple assignments are possible, we assign the requirement to
the cell requiring the highest maturity. Assignment here is defined as either a
requirement can be found similarly in Figure 2.1 or a requirement depends
on an aspect in Figure 2.1.
In the following we shortly discuss some difficult to assign requirements and
give our reasoning which might also serve as an example, respectively guidance
for the other aspects we assigned.

• A.9.1.1(a): Authentication itself is not really dealt with in the CD ma-
turity model. However, we consider all authentication and authorization
requirements to be mappable to a Standard process for all environments.
So this also includes requirements A.9.1.1(b), A.9.1.2, A.9.2.2, etc.

• A.9.2.4: Also requires a standard process for all environments, such that
all systems are created with temporary secret authentication information

• A.9.2.5(a): We map component ownership to ownership of systems and
artefacts

• A.12.1.3(a): We map this also to Standard process for all environments
since no other aspect is quite fitting and we need a standard process for
all environments which includes monitoring of created environments

• A.14.2.4, A.14.2.7: In contrast to A.12.1.3(a), those two requirements
are elements of the process and thus mapped to Measure the process.
A.12.1.3 is more something the process has to enforce

• A.18.1.3, A.18.1.4: Both aspects were are mapped to Report History
Available as closest match. In section 6.7 we only consider protection of
personally identifiable information in historic reports

• A.12.1.2(c), A.12.5.1(a): Infrastructure as code required for versioning
infrastructure

• A.18.1.2: Compliance testing is not listed in the maturity model. Even-
tually, we mapped it to the Advanced level, because this level contains
all fully automated testing aspects

The resulting assignment can be seen in Figure 6.3 and can be compared
to Figure 2.1 (side-by-side). The order of the entries is one after another
according to the order of the requirements in section 6.2.

71

6 Results

Figure
6.3:M

apping
ofC

D
m
aturity

m
odelw

ith
our

security
m
aturity

m
odel

72

6.7 Realization Suggestions

After all, difficult to assign are those aspects which can be realized to a
varying degree. We had to e.g. weigh up whether IaC was more relevant to
assign the requirement or some other aspect as many requirements can only
be realized fully automated if we use IaC. In general, most of our extracted
requirement could be assigned to different maturity levels. An example for
this is A.16.1.2 - report information security events, e.g. access violations,
etc.. It could be realized with manual reporting in which case it would belong
to the Information & Reporting Base level, but also with Scheduled Quality
Reports in which case it would belong to the Beginner level of the same
category. In the end, this is one of the reasons why we chose to always assign
the requirement to the cell holding the highest maturity level if multiple
assignments are possible.

Interesting to see is that the model has some hotspots where many requirements
are mapped, respectively assigned to. Those comprise versioned code base,
dedicated build server, measure the process, common process for all changes,
standard process for all environments, report history is available, full automatic
tests, infrastructure as code. Strikingly those fit exactly to our categories
(see section 6.2) 2. Logging and Monitoring, 3. Change Management and 4.
Artefacts and Systems (regarding tests).

Furthermore, we see that on average an Intermediate level of maturity is
required for security, whereby eight aspects require, respectively are mapped
to IaC which is assigned to Expert level maturity by Rehn et al.[BRP13].

Finally, a special case is A.12.1.2(b), since it basically stands against CD.
The CD maturity model attests a higher maturity for fewer branches whereas
A.12.1.2(b) requires multi-branch support. Thus, we assigned it to the Base
level.

6.7 Realization Suggestions

After having done the assignment and categorization in section 6.2, for each
category, we determine concrete realizations based on the functional require-
ments. At that, we aim for maximising the degree of automation. However,
here realization has to be understood as a collection of realization concepts,
respectively suggestions for the concrete environment (see section 6.7.1) which
then has to be applied step-by-step to a production environment (future work,
respectively not scope of this thesis). It is only intended to give guidance
on how a possible realization might look like and to get an idea whether the
requirements are realizable at all. Eventually, this Chapter is also shortly
considered in the discussion.

73

6 Results

6.7.1 Environment

In order to be able to concretise all aspects, we have to define our environment.
For simplicity we always assume the latest versions (as of September 2019).

• Gitlab - only for version control, not for CD features / pipeline manage-
ment

• Nexus
• Jenkins
• Maven
• Java

Limiting the environment to the above technologies means that there is a high
possibility that some of the proposed realization ideas might not work for
other technologies or that there do not even exist any realization. However,
this is not the scope of this chapter. We only want to give realization ideas to
get a better understanding of the SoA and to get an idea to which degree the
ISO 27001 is realizable. The links given were accessed on September 2019
where most of them originate either from [Son], [Jen], [Git] or [OWA].

6.7.2 1. Access Management

A.9.1.1(a)

Use Gitlab OAuth Plugin for Jenkins1 and use similar plugin2 for Nexus.
Both plugins allow to use Gitlab as authentication provider.

A.9.1.1(b), A.9.1.2, A.9.2.2, A.9.2.3(a), A.9.4.1, A.9.4.5, 12.4.2(a)

For Jenkins, use the "Use Gitlab repository permissions" feature to map user
permissions from Gitlab to Jenkins.
Assuming a perfectly realised continuous delivery process, only Jenkins should
have deployments rights to the Nexus and every authenticated user shall have
read access.

A.9.2.1

Gitlab supports authentication via LDAP3

1https://wiki.jenkins.io/display/JENKINS/Gitlab+OAuth+Plugin
2https://github.com/auchanretailfrance/nexus3-gitlabauth-plugin
3https://docs.gitlab.com/ee/administration/auth/ldap.html

74

https://wiki.jenkins.io/display/JENKINS/Gitlab+OAuth+Plugin
https://github.com/auchanretailfrance/nexus3-gitlabauth-plugin
https://docs.gitlab.com/ee/administration/auth/ldap.html

6.7 Realization Suggestions

A.9.2.4

Enforcing the change of user credentials on next login can be done with
Operating System (OS) means. For e.g. Windows via wmic, and wmic and
for e.g. Linux with chage.

A.9.2.5(a)

Use vSphere plugin (see A.12.1.3(a)); Set owner information in notes field
(of vSphere) via the Reconfigure VM step. Owner information therefore is
needed in pipeline, otherwise pipeline should fail. Can be done in pipeline
Domain Specific Language (DSL). Regarding information of owners create
extra jobs.

A.9.3.1(a)

Implement creation of password in pipeline DSL according to company policies.
Create Virtual Machine (VM) templates (see A.9.2.5(a), A.12.1.3(a)) which
force the company’s password policy as system password policy.

A.9.3.1(b)

All systems encrypt authentication information.

A.9.4.2

Since we intend to use Gitlab as authentication provider for Jenkins, we also
get there the Gitlab login screen which out-of-the-box does support all but
two of the aspects. The first not requirement not supported out-of-the-box is
the warning message that the computer should only be accessed by authorized
users. This warning can be added via a branded login page4. Unfortunately,
there is no easy way to enforce the restriction of the connection times.
Regarding Nexus, if anonymous access is disabled it supports, respectively
not supports the same aspects as Gitlab. Restricting the connection times is
not possible either, but in contrast to Gitlab, creating a warning notice does
not seem to be possible.

A.9.4.4(a)

Gitlab does not offer permissions granular enough to provide such restrictions.
Either a user has the access right to modify the process or he does not.

4https://docs.gitlab.com/ee/customization/branded_login_page.html

75

https://docs.gitlab.com/ee/customization/branded_login_page.html

6 Results

A.12.2.1(a)

This only affects Jenkins, which is considered in A.13.2.3(a).

A.13.2.3(a)

The easiest way to prevent all unwanted external communication is to use
an application firewall on the system (e.g. modify the hosts file in order
to blacklist all Top-Level-Domains and whitelist the allowed domains; even
though the requirement requires whitelisting, the technical realization first
requires blacklisting). For Jenkins, only access to Gitlab and Nexus should be
granted. Depending on the scanners needed, we might also have to whitelist
connections to online databases (such as CVE). Gitlab should not be allowed
any external communication. However, Nexus requires communication to the
whitelisted repositories.

6.7.3 2. Logging and Monitoring

A.9.1.1(c)

Use logging facilities provided by all three applications (Jenkins5, Nexus6,
Gitlab7).

A.9.2.3(b)

See A.9.1.1(c).

A.9.2.5(b)

See A.9.1.1(c).

A.9.4.4(b)

See A.9.1.1(c).

5https://wiki.jenkins.io/display/JENKINS/Logging
6https://support.sonatype.com/hc/en-us/articles/213464768-Nexus-2-Logging-Guide
7https://docs.gitlab.com/ee/administration/logs.html

76

https://wiki.jenkins.io/display/JENKINS/Logging
https://support.sonatype.com/hc/en-us/articles/213464768-Nexus-2-Logging-Guide
https://docs.gitlab.com/ee/administration/logs.html

6.7 Realization Suggestions

A.12.1.3(a)

Jenkins can be installed with vSphere plugin8. It should be enforced that
systems have to be created, respectively managed via that plugin (via pipeline
DSL). Furthermore, it has to be enforced that the vSphere has monitoring
enabled which can be done via the Application Programming Interface (API)9.

A.12.1.4(a)

Jenkins preserves the console log (log of all execute commands in a build)
which might serve as an audit log.

A.12.4.1

See A.9.1.1(c).

A.12.4.2(b), A.12.4.3(a)

All delivery systems offer no means to edit logs. The systems should have
correctly configured permissions, respectively access rights such that no
unprivileged user can access the logs. As for privileged users, this is more
difficult: The systems should have personalized log-in data which at least
helps regarding traceability of manipulations. However, there has to be a root
user for some operations and given that a person can physically access systems,
manipulation of logs can never be ruled out. An option is to employ regular
backups, respectively snapshot them, such that changes are observable.

A.12.4.3(b)

See A.9.1.1(c).

A.14.2.4

A minimal and imprecise solution is to search the artefact id of every artefact
which is published to an internal repository (in the Nexus) in a public
repository (e.g. the maven central repository). If a match is found there is an
increased likelihood that the internal artefact is a modified external artefact.

8https://wiki.jenkins.io/display/JENKINS/vSphere+Cloud+Plugin
9http://vmware.github.io/vsphere-automation-sdk-rest/6.5/operations/com/
vmware/appliance/monitoring.list-operation.html

77

https://wiki.jenkins.io/display/JENKINS/vSphere+Cloud+Plugin
http://vmware.github.io/vsphere-automation-sdk-rest/6.5/operations/com/vmware/appliance/monitoring.list-operation.html
http://vmware.github.io/vsphere-automation-sdk-rest/6.5/operations/com/vmware/appliance/monitoring.list-operation.html

6 Results

A.14.2.7

The Nexus should proxy external repositories, thus only the proxy repositories
have to be monitored. Monitoring here includes summarized reports of proxied
artefacts, respectively new artefacts.

A.16.1.2

See 16.1.4, where we covered not only the assessment, but also the reporting.

A.16.1.7

See A.9.1.1(c).

A.18.1.3

Regularly snapshot and backup data, respectively log directories.

A.18.1.4

At least long-term archived logs shall be scanned on all user names existent
in LDAP and be replaced with the associated user ids.

6.7.4 3. Change Management

A.12.1.2(a)

Jenkins stops build on errors in any build step (except explicitly configured
otherwise) and does not perform any build step after the failing one.

A.12.1.2(b)

Forcing of two-man principle can be realized by protecting the master branch
(and the release branch) of every project. This means that one can not commit
(respectively push) directly to those branches. Gitlab merge-request approvals
might help too10. Regarding Jenkins, one can use the multi-branch plugin11
to automatically create a job per branch. Via pipeline DSL it is possible to
e.g. enforce a release job.

10https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_
approvals.html

11https://wiki.jenkins.io/display/JENKINS/Pipeline+Multibranch+Plugin

78

https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html
https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html
https://wiki.jenkins.io/display/JENKINS/Pipeline+Multibranch+Plugin

6.7 Realization Suggestions

A.12.1.2(c), A.12.5.1(a)

Use IaC, configuration management and a pipeline DSL. The pipeline man-
agement system should not offer the possibility to manually create pipelines
/ jobs. For Jenkins we can restrict the ability to create jobs with the Role
Strategy plugin12.
Furthermore, every project within the pipeline management system has to
have a repository of a version control system as source and has to be created
from such a repository. We can force this by only allowing the Gitlab as
source code management.
Jenkins should be only allowed to be deployed via a pipeline (for which
organization again has to enforce versioning).

A.12.1.2(d), A.14.2.3

Jenkins out-of-the-box (or with plugins) supports triggers, among others
comprising version control triggers13, scheduled triggers, etc.. Triggering on
operating platform changes is more difficult. One approach might be to use
a file system trigger plugin14 in combination with writing a specific file in
regular intervals on the systems. For Windows, writing such a file could
be done with Get-WinEvent -LogName Setup | where{$_.message -match
"success"} | select -First 1. For Linux one could let the FSTrigger plugin
monitor the dpkg.log..

A.12.5.1(b)

First, release jobs have to keep full build history which can be forced in pipeline
DSL. Second, since releases are pushed to some kind of artefact storage the
log should contain the exact release information (at least for maven). If that
is not the case, we should explicitly log the release information which can be
enforced in the pipeline DSL.

A.14.2.2(a)

See A.12.1.2(b).

A.14.2.2(b)

In Gitlab it is possible to set push-rules15.
12https://wiki.jenkins.io/display/JENKINS/Role+Strategy+Plugin
13https://plugins.jenkins.io/gitlab-plugin
14https://wiki.jenkins.io/display/JENKINS/FSTrigger+Plugin
15https://docs.gitlab.com/ee/push_rules/push_rules.html

79

https://wiki.jenkins.io/display/JENKINS/Role+Strategy+Plugin
https://plugins.jenkins.io/gitlab-plugin
https://wiki.jenkins.io/display/JENKINS/FSTrigger+Plugin
https://docs.gitlab.com/ee/push_rules/push_rules.html

6 Results

6.7.5 4. Artefacts and Systems (ONLY internal aspects)

A.10.1.1, A.10.1.2

Use available static code analysis tools as mandatory build steps16. Since we
reference this aspect in many other aspect, we want to mention here this list
of security related static code analysis tools17.

A.12.1.1

One could integrate a repository linter18 as a mandatory build step to check
for e.g. the existence of a README.md.

A.12.1.4(b)

Force VM instantiation of templates to different clusters.

A.12.1.4(c)

Deployment to operational systems should only be allowed if build, tests and
deployments to testing, respectively development systems was successful.

A.12.1.4(d)

see A.12.1.4(c).

A.12.2.1(b)

See A.10.1.1, A.10.1.2, e.g. use vmray19 to scan jars for malware.

A.12.2.1(c)

See A.12.1.2(c), A.12.5.1(a); enforce the use of the vSphere plugin for newly
created systems (based on pre-made templates). Those templates shall include
a virus scanner .

16like https://cryptosense.com/support/static-crypto-scanner/
17https://www.owasp.org/index.php/Static_Code_Analysis
18like https://github.com/todogroup/repolinter
19https://www.vmray.com/cyber-security-blog/malware-uses-java-archive-jar/

80

https://cryptosense.com/support/static-crypto-scanner/
https://www.owasp.org/index.php/Static_Code_Analysis
https://github.com/todogroup/repolinter
https://www.vmray.com/cyber-security-blog/malware-uses-java-archive-jar/

6.7 Realization Suggestions

A.12.5.1(c)

Do not allow any installations on the created systems in A.12.1.2(c), A.12.5.1(a)
(and also A.12.2.1(c)), respectively only allow changes to systems (templates)
via IaC.

A.12.6.1

Integrate dependency-check, NPM audit, etc. as mandatory build steps
into the process. Eventually use tools like dependency-track20 for advanced
features.

A.13.2.3(b)

Force the installation of a firewall (see A.12.1.2(c), A.12.5.1(a)) and e.g. close
port 80.

A.14.1.1

see A.6.1.5.

A.14.1.2

see A.13.2.3(b).

A.14.1.3

see A.14.1.2.

A.14.2.1(a)

see A.10.1.1; use any static code analysis tool.

A.14.2.5

see A.10.1.1, A.10.1.2, A.14.2.1(a), etc..

A.14.2.8

see A.10.1.1, A.10.1.2.
20https://dependencytrack.org/

81

https://dependencytrack.org/

6 Results

A.14.2.9

Use e.g. Cobertura21 as a mandatory build step, respectively gateway.

A.18.1.2

see A.10.1.1, A.10.1.2.

6.7.6 5. Other Policies/Requirements

A.6.1.5

Use and enforce some kind of pipeline DSL to achieve mandatory process
steps.

A.12.1.3(b)

Nexus, Gitlab and Jenkins all both offer an API and extensibility via plugins.
With those means, obsolete data should be cleaned.

A.12.3.1

Use IaC and configuration management which certainly helps regarding the
ease of a backup. Other than that, this requirement is rather fuzzy and we
do not have any influence on the management of data which is specific to
each application.

A.12.4.4

Force same (possibly local) Network Time Protocol (NTP) server on all
systems via IaC.

A.13.2.1

Nexus, Gitlab and Jenkins all support TLS.

A.14.2.1(b)

We have no influence on Gitlab, but it e.g. offers TLS (see A.13.2.1).
21https://cobertura.github.io/cobertura/

82

https://cobertura.github.io/cobertura/

6.7 Realization Suggestions

A.16.1.4

Gitlab offers in the paid plan audit events22. Other than that there exists the
/events api endpoint which returns repository events. Both resources could
be used by an additional application to create alerts based on certain metrics.
For Jenkins there are various possibilities, e.g. the Audit Trail Plugin23 or
the Prometheus metrics plugin24. Prometheus then can send out alerts.
Nexus also has a logging endpoint which could be post-processed by an
additional application to create alerts as well as an auditing functionality25.

A.17.2.1

All delivery sytems can be run as High Availability (HA)26 27 28. However,
availability requirements have to be checked before anyway.

22https://docs.gitlab.com/ee/administration/audit_events.html
23https://wiki.jenkins.io/display/JENKINS/Audit+Trail+Plugin
24https://plugins.jenkins.io/prometheus
25https://help.sonatype.com/repomanager3/configuration/auditing
26https://help.sonatype.com/repomanager3/high-availability
27https://about.gitlab.com/solutions/high-availability/
28https://jenkins.io/doc/book/architecting-for-scale/

83

https://docs.gitlab.com/ee/administration/audit_events.html
https://wiki.jenkins.io/display/JENKINS/Audit+Trail+Plugin
https://plugins.jenkins.io/prometheus
https://help.sonatype.com/repomanager3/configuration/auditing
https://help.sonatype.com/repomanager3/high-availability
https://about.gitlab.com/solutions/high-availability/
https://jenkins.io/doc/book/architecting-for-scale/

7 Discussion

We spend our time searching for
security and hate it when we get
it.

John Steinbeck

Contents

7.1 SoA . 85
7.1.1 Goals . 85
7.1.2 Setup . 86
7.1.3 Results . 86
7.1.4 Discussion . 89

7.2 Discussion of Assignment Statistics 90
7.3 Discussion of Models . 90

In the process of creating the SoA, we already regularly consulted and
evaluated the state of the SoA with the company’s security expert who is
responsible for the ISO certification. Thereby, we mainly focused on the
applicability and our understanding of the ISO 27001. Nonetheless, we also
want to evaluate the applicability from another point of view, namely the
DevOps team’s view. In the following two sections we evaluate two different
aspects. The first one is the already mentioned evaluation of the SoA. Thereby,
we deal with the goals, the setup, our expectations and finally the results
of this evaluation. In the second one, we then evaluate our maturity model,
respectively DevOpsSec model and deal with threats to validity of our whole
thesis.

7.1 SoA

7.1.1 Goals

We have three goals for our evaluation. They can be found in the following.
The sub-bullets describe the concrete matter of evaluation:

1. Validation of SoA

• Assess applicability in general

85

7 Discussion

• Asses (degree of) correspondence of functional requirement to control
2. Applicability to CD of our industry partner

• Assess applicability to CD of our industry partner of the (theoreti-
cally) applicable controls, respectively functional requirements

3. State / Degree of realization of controls at our industry partner
• Get information regarding the state of realization (realized, planned,

etc.)

7.1.2 Setup

The evaluation setup is as follows. We choose 2 team members of the DevOps
team for evaluation. We set up a workshop, respectively a meeting in which
we deal with every single ISO requirement one after another. The criteria
according to which every requirement is being assessed can be found in
section 7.1.1 and the respective scales in section 7.1.2. Matter of evaluation
is section 6.1.

Scales

We want to obtain quantitative findings on the following (already stated)
aspects for which we also state the scales:

• Applicability in general: {Unknown, Not applicable, Applicable} (nomi-
nal)

• Degree of correspondence of functional requirement to control: [-1,3]
(interval; 3 for Full Correspondence, 0 for No Correspondence, -1 for
Unknown)

• Applicability to CD of our industry partner: {Unknown, Not applicable,
Applicable} (nominal)

• State of realization at our industry partner: {Unknown, Not planned,
Partly Planned, Planned, Partly Realized, Realized} (ordinal)

7.1.3 Results

First, we validated all 88 controls of our SoA. Thereof, we considered 50 to
be applicable before the evaluation and 38 not applicable. Important to note
is that due to the limited time of this evaluation and the large extent of the
SoA, we only considered the controls without distinguishing between internal
and external. Figure 7.1 shows our validation resulted in eight controls being
additionally considered applicable.

86

7.1 SoA

Figure 7.1: Number of applicable controls including new ones

For our industry partner, we evaluated all aspects applicable, respectively not
applicable which we also considered applicable, respectively not applicable
before the evaluation. We did not evaluate the applicability of the eight newly
considered applicable controls, however, we consider it likely that they are
also applicable to our industry partner since of the 50 applicable controls in
general, all of them were also applicable to our industry partner.
The eight controls additionally considered applicable after validation are
(including the reasoning):

• A.6.2.1: Use two factor authentication for CD systems
• A.8.1.1, 8.1.2: CD system already holds asset information (Gitlab, Nexus

are nothing else than asset collections)
• A.8.1.3: Might also include user permission management (access to
assets)

• A.8.2.2: Originally considered as a more abstract responsibility (e.g.
label Jenkins assets once), however, the DevOps team e.g. already labels
artefacts according to their availability (build artefact vs Release To
Manufacturing (RTM) artefact)

• A.8.2.3: Restrict access to respectively labelled artefacts (see A.8.2.2)
• A.13.1.1, A.13.1.3: For VMs or Docker containers the DevOps team

manages networks
Second, we validated the degree of correspondence between our functional
requirements and the controls of the ISO 27001. Figure 7.2 shows the

87

7 Discussion

Figure 7.2: Overview of assessment of correspondence

distribution of the values (from one to three), the most frequent value being
the three.
Finally, we evaluated the state of realization of the controls of our industry
partner. An overview is shown in Figure 7.3.
We see that of the 50 applicable controls to our industry partner, around two
thirds are either partly realized or realized where both states are pretty similar
with 19 to 17 controls. Seven controls were not yet considered regarding
planning at all. Two are partly planned and five are planned in form of cases.
Furthermore, we discussed many more aspects in detail. In the following we
highlight some of the more interesting results of those discussions thereby
including many of the controls with a lower evaluated correspondence. For
that, we focus on those aspects which are of general interest and no specific
aspects of our industry partner:

• A.9.2.1: Not all systems support LDAP, e.g. some require windows
domain

• A.9.2.2: Even the applications with LDAP integration do not always
(immediately) withdraw user access rights if the LDAP account is disabled

• A.9.2.5: If using Gitlab as authentication provider only send project,
respectively namespace owners of Gitlab notifications in order to reduce
spam

• A.9.4.4: Restriction of outgoing connections might help, respectively
implement control

88

7.1 SoA

Figure 7.3: Current state of realization at our industry partner

• A.12.1.2: Change of permissions shall also be considered
• A.14.1.3: Also relevant and important for delivery systems itself, consid-

ering e.g. only releasing half of the artefacts due to connection problems

7.1.4 Discussion

After all, we see basically two interesting aspects. The first one is the eight
aspects which were newly found to be applicable. This is the point where
we have come full circle from our challenges. The problem regarding the
ISO 27001 is its fuzziness. There are many aspects where CD can support
the ISO 27001 in some way. This shows e.g. for control A.8.2.2 which we
considered not to be the responsibility of the delivery systems, but more an
organizational responsibility to label the delivery systems in general. Practice
shows that this labelling is not only useful in such an organizational way, but
also for concrete artefacts which means that we should definitely comply to
the ISO 27001 here with CD.
The second aspect deals with the state of realization at our industry partner.
We see that only about a third of the controls is already realized. However,
also about a third is partly realized. And this is again the point where we
have come full circle from our challenges, here, the intricacy of the ISO 27001
controls and therefore also of the extracted functional requirements. Many
requirements are so broad that it is difficult to fully realize them after all.
Finally, one of the evaluation results of the SoA is a high degree of correspon-

89

7 Discussion

dence between the controls and our functional requirements. Even though
this is a good result regarding our thesis, we still consider some aspects being
to broad and think that the SoA can be further refined in order to get more
detailed requirements such that a company can fully implement all applicable
controls with CD.

7.2 Discussion of Assignment Statistics

In section 6.1.3 we observed that there are only three requirements assigned
to model in total. This can be explained by the vast amount of information
the delivery systems carry, respectively contain. Thus, conceptually nearly
all the information needed is somewhere available. This is very interesting to
see since it shows that we can fully automate nearly all the aspects we found
to be applicable.
However, in a technical realization there might be more requirements which
require user input, because not every information might be technically easy
to obtain.
Another aspect which we want to discuss here are the categories Tony Hsu
considered to be in the responsibility of DevOps in contrast to our detailed
assessment on applicability. In accordance with Tony Hsu, we can see in
section 6.1.3 that we did not found any control to be applicable in sections
5, 7, 8, 11, 15 of the SoA. However in section six we found one out of seven
controls to be applicable, namely the quite general control that information
security shall be addressed in project management. After all the areas of
responsibility as stated by Tony Hsu (see Figure 2.4) are sensible.

7.3 Discussion of Models

In this section, we discuss the dependency, the maturity and finally the
mapped model.
Figure 6.1 only has five inter-category dependencies. This indicates that our
choice of categories is sensible, since most dependencies are intra-category
dependencies.
Interesting to see in Figure 6.2 is the distribution of the number of requirements
over the different levels. The highest maturity level, the Artefacts-oriented
level, comprises the highest number of requirements. Furthermore, the
majority of its requirements are process related requirements. The number
of requirements decreases in both the middle level, the System-dependent
level, and the lowest level, the System-oriented level. In contrast to the high
number of process related requirements in the Artefacts-oriented level, the

90

7.3 Discussion of Models

middle System-dependent level includes most system related requirements.
After all, this appears to be sensible since the process has to be supported by
the system. Finally the lowest level of maturity is characterized by containing
rather general requirements mostly related to the system.
All in all, this means in order to get a high degree of ISO 27001 compliance
for artefacts and systems from a CD viewpoint, we have to obtain a high level
of maturity. This especially requires a high degree of ISO 27001 compliance
of the system itself first.
Regarding our mapped model (see Figure 6.3), we stated that on average
an intermediate level of maturity is required for most security requirements.
Due to the intermediate level being a level where full automation in many
aspects is required, it is a sensible result that this is the level which is on
average required by our security requirements, because our goal with CD is
to automate as much as possible. Furthermore, we discovered some hotspots.
This coincides also with our realization, where some technical realizations
like using IaC were important for many requirements and this also coincides
with the realizations at our industry partner where the same fact applies.

91

8 Conclusion

Final thoughts are so, you know,
final. Let’s call them closing
words.

Craig Armstrong

Contents

8.1 Threats to Validity . 94
8.2 Future Work . 94

In this thesis we examined the ISO 27001 and its applicability to CD, respec-
tively its implementability with CD. The goal was to provide guidance and
models in order to help organization’s CD to maximally support, comply to
and implement the ISO 27001 and in general to increase security when using
CD. We were interested in the state of realization at our industry partner, as
well as the possible degree of automation of the ISO 27001 with CD.
Therefore, we created the SoA in which we assessed the applicability, the
implementability with regard to model, process, or system and finally formu-
lated functional requirements. Thereby, we found the ISO 27001 to be highly
automatable. We then categorized those functional requirements in order to
structure them, especially for the further usage in our models. In the next
step, we created the first model, namely the realization roadmap in which
we assessed the requirements according to their estimated required effort.
After that, we built the dependency model which we then used to create the
maturity model. Thereby, the maturity model showed that in order to get a
high degree of ISO 27001 compliance for artefacts from a CD viewpoint, we
have to obtain a high level of maturity. This in turn requires a high degree of
ISO 27001 compliance of the system itself first.
Lastly, we mapped our requirements to the maturity model by Rehn et al.
which yielded the result that for our security requirements on average an
intermediate level of CD is required.
Finally, we discussed the SoA itself and the state of realization at our industry
partner with the result that it is difficult to fully implement applicable controls
of the ISO 27001. However, at our industry partner around two thirds of the
controls are either realized or at least partly realized which we consider a
good result.

93

8 Conclusion

8.1 Threats to Validity

Due to the challenges mentioned which already occurred to us in the discussion,
there are two threats to validity which we would like to mention.
The process of transforming the ISO 27001 into a (multiple) model(s) includes
many abstractions. We performed them with greatest prudence, but we can
not guarantee that no information or control got altered in its understanding
during this process or even that every control was understood correctly and
as intended in the beginning. This is partly due to the fuzziness of the ISO
27001 (see section 3.1.2).
Furthermore, we had to map those controls to CD. We had to come up with
concepts how ISO 27001 controls can be realized in CD. For some controls,
there might be multiple solutions and for some other controls there are
solutions where we did not consider any solution at all.

8.2 Future Work

In a next step one could technically realize every requirement for all delivery
systems. As such, ISO 27001 compliance could be reached with the highest
degree possible for CD by just using this system which performs in a (nearly)
fully automated way.
Before, one should probably further refine the SoA. This could be done e.g.
by comparing the results of a real assessment with the ones we obtained which
was not possible in this thesis due to the timing of the ISO 27001 certification.
Additionally, one could create a metric such that one could calculate the degree
of compliance to the ISO 27001 based on fulfilled requirements. Finally, every
build could automatically include an audit report regarding the compliance
to the ISO 27001 based on the individual process it passed.

94

Bibliography

[All] C. S. Alliance. Cloud Control Matrix. url: https://cloud
securityalliance.org/ (visited on 09/10/2019) (cited on
pages 13, 14).

[BRP13] P. Boström, A. Rehn, and T. Palmborg. The Continuous Delivery
Maturity Model. 2013. url: https://www.infoq.com/art
icles/Continuous-Delivery-Maturity-Model/ (cited
on pages 5, 6, 73).

[Bsia] BSI-Standard 200-1 - Information Security Management Systems
(ISMS). Standard. Bundesamt für Sicherheit in der Information-
stechnik, Oct. 2017 (cited on pages 3, 12).

[Bsib] BSI-Standard 200-2 - IT-Grundschutz Methodology. Standard.
Bundesamt für Sicherheit in der Informationstechnik, Oct. 2017
(cited on page 21).

[BWZ15] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Archi-
tect’s Perspective. SEI Series in Software Engineering. New York:
Addison-Wesley, 2015. isbn: 978-0-13-404984-7. url: http://
my.safaribooksonline.com/9780134049847 (cited on
page 8).

[Che15] L. Chen. “Continuous Delivery: Huge Benefits, but Challenges
Too”. In: IEEE Software 32.2 (2015), pp. 50–54. issn: 0740-7459.
doi: 10.1109/MS.2015.27 (cited on page 4).

[Com+90] I. S. C. Committee et al. “IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos”.
In: CA: IEEE Computer Society 169 (1990) (cited on page 25).

[Fit+13] B. Fitzgerald et al. “Scaling agile methods to regulated envi-
ronments: An industry case study”. In: Proceedings of the 2013
International Conference on Software Engineering. IEEE Press.
2013, pp. 863–872 (cited on pages 24, 25).

[FS14] B. Fitzgerald and K.-J. Stol. “Continuous Software Engineering
and Beyond: Trends and Challenges”. In: Proceedings of the 1st
International Workshop on Rapid Continuous Software Engi-
neering. RCoSE 2014. Hyderabad, India: ACM, 2014, pp. 1–9.
isbn: 978-1-4503-2856-2. doi: 10.1145/2593812.2593813.

95

https://cloudsecurityalliance.org/
https://cloudsecurityalliance.org/
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model/
http://my.safaribooksonline.com/9780134049847
http://my.safaribooksonline.com/9780134049847
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1145/2593812.2593813

Bibliography

url: http://doi.acm.org/10.1145/2593812.2593813
(cited on page 22).

[Gdp] Official Journal of the European Union. Legislation. European
Union, 2016 (cited on page 12).

[Git] Gitlab. GitLab Documentation. url: https://docs.gitlab.
com/ (visited on 09/30/2019) (cited on page 74).

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Adobe
Reader). Pearson Education, 2010 (cited on pages 4, 5, 7, 8).

[HL06] M. Howard and S. Lipner. The Security Development Lifecycle.
Redmond, WA, USA: Microsoft Press, 2006. isbn: 0735622140
(cited on page 21).

[Hsu18] T. Hsu. Hands-on security in DevOps : ensure continuous security,
deployment, and delivery with DevSecOps. Birmingham, UK:
Packt Publishing, 2018. isbn: 978-1788995504 (cited on pages 9–
11, 18, 20, 25).

[Isoa] Information technology — Security techniques — Code of prac-
tice for information security controls. Standard. International
Organization for Standardization, Oct. 2013 (cited on pages 20,
21, 39, 40, 42, 52).

[Isob] Information technology — Security techniques — Information
security management systems — Requirements. Standard. Inter-
national Organization for Standardization, Oct. 2013 (cited on
pages 11, 33).

[Jen] Jenkins. Jenkins. url: https://jenkins.io/ (visited on
09/30/2019) (cited on page 74).

[MCP17] H. Myrbakken and R. Colomo-Palacios. “DevSecOps: A Multivo-
cal Literature Review”. In: Software Process Improvement and
Capability Determination. Ed. by A. Mas et al. Cham: Springer In-
ternational Publishing, 2017, pp. 17–29. isbn: 978-3-319-67383-7
(cited on pages 1, 17, 18).

[MO16] V. Mohan and L. B. Othmane. “SecDevOps: Is It a Marketing
Buzzword? - Mapping Research on Security in DevOps”. In:
2016 11th International Conference on Availability, Reliability
and Security (ARES). 2016, pp. 542–547. doi: 10.1109/ARES.
2016.92 (cited on page 1).

[MR11] M. Merkow and L. Raghavan. “An ecosystem for continuously
secure application software”. In: CrossTalk, March/April (2011)
(cited on page 24).

96

http://doi.acm.org/10.1145/2593812.2593813
https://docs.gitlab.com/
https://docs.gitlab.com/
https://jenkins.io/
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1109/ARES.2016.92

Bibliography

[OWA] OWASP. OWASP SAMM Project. url: https://www.owa
sp.org/index.php/OWASP_SAMM_Project (visited on
09/16/2019) (cited on page 74).

[Sam] Software Assurance Maturity Model - A guide to building security
into software development. Standard. OWASP, Mar. 2009 (cited
on pages 22, 23).

[SLD18] A. Steffens, H. Lichter, and J. S. Döring. “Designing a Next-
generation Continuous Software Delivery System: Concepts and
Architecture”. In: Proceedings of the 4th International Workshop
on Rapid Continuous Software Engineering. RCoSE ’18. Gothen-
burg, Sweden: ACM, 2018, pp. 1–7. isbn: 978-1-4503-5745-6. doi:
10.1145/3194760.3194768. url: http://doi.acm.org/
10.1145/3194760.3194768 (cited on pages 8, 9).

[Son] Sonatype. Repository Manager 3. url: https://help.sona
type.com/repomanager3 (visited on 09/30/2019) (cited on
page 74).

97

https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://doi.org/10.1145/3194760.3194768
http://doi.acm.org/10.1145/3194760.3194768
http://doi.acm.org/10.1145/3194760.3194768
https://help.sonatype.com/repomanager3
https://help.sonatype.com/repomanager3

Glossary

API Application Programming Interface

CAPEC Common Attack Pattern Enumeration and Classification
CCM Cloud Controls Matrix
CD Continuous Delivery
CSA Cloud Security Alliance
CVE Common Vulnerabilities and Exposures

DSL Domain Specific Language

EU European Union

GDPR General Data Protection Regulation

HA High Availability

IaC Infrastructure as Code
IP Internet Protocol
ISMS Information Security Management System

LDAP Lightweight Directory Access Protocol

NIST National Institute of Standards and Technology
NTP Network Time Protocol

OS Operating System
OWASP Open Web Application Security Project

RTM Release To Manufacturing

SAMM Software Assurance Maturity Model
SDL Security Development Lifecycle
SoA Statement of Applicability

99

Glossary

TLS Transport Layer Security

URL Uniform Resource Locator

VM Virtual Machine

100

Glossary

101

	Introduction
	Structure of this Thesis

	Background
	Information Security Management System
	Continuous Delivery
	DevOps
	Deployment Pipeline
	Security Framework Design Principles
	Well-known security frameworks
	Cloud Security Alliance

	Problem Statement
	Challenges

	Related Work
	DevOpsSec
	Practice of Security Standards
	Security Development Lifecycle
	OWASP SAMM
	Continuous Software Engineering and Agile Methods
	Missing Requirements and Models

	Methodology
	Scope of Work
	Research Questions

	Results
	Statement of Applicability
	Resulting Major Categories
	Realization Roadmap
	Dependency Model
	Maturity Model
	CD maturity meets CD ISO Maturity Model
	Realization Suggestions

	Discussion
	SoA
	Discussion of Assignment Statistics
	Discussion of Models

	Conclusion
	Threats to Validity
	Future Work

	Bibliography
	Glossary

