
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

An Incremental Code
Generator for Heterogeneous

Software and Infrastrucutre

Ein inkrementeller Code Generator
für heterogene Software und

Infrastruktur

presented by

Ralph Geerkens

Aachen, May 9, 2017

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens, M.Sc.

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

An Incremental Code Generator for Heterogeneous Software and Infrastrucutre

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

An Incremental Code Generator for Heterogeneous Software and Infrastrucutre

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, May 9, 2017 (Ralph Geerkens)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, May 9, 2017 (Ralph Geerkens)

Abstract

Using modular software architectures, which favours separation of concern, results in
more complex software development environments. With DevOps not only software
developers but also operationals will work in the same environment making it more
heterogeneous. A code generator can reduce the overhead of creating a new development
environment, which corresponds to the architecture of the software system and which has
to address the concerns of multiple stakeholders. Incremental usage and generation of an
exemplary application make the generator applicable at any time during the software
development process and also by inexperienced developers and operationals. This thesis
presents the architecture and concepts of a code generator, which addresses those issues,
and has shown by an evaluation, that it fastens the creation of development environments
and its very flexible in its usage.

Contents

1. Introduction 1
1.1. Structure of this Thesis . 2

2. The Motivation and Requirements for a Code Generator 3
2.1. Knowledge Sharing in a Corporate Environment 5
2.2. Motivation for a Code Generator . 6
2.3. The Problem Statement . 6
2.4. Case Study at KISTERS AG . 7
2.5. Requirements for a Code Generator . 7
2.6. Summary . 9

3. Related Work 13
3.1. Generator Frameworks . 13
3.2. Framework-specific Code Generators . 16
3.3. Summary . 22

4. Code Generation Concepts for Operation-sensitive Development Environments 25
4.1. Background: Architecture Views and Viewpoints 25
4.2. Software Project Model . 30
4.3. Stakeholders . 32
4.4. Summary . 33

5. Code Generator Architecture and Concepts 35
5.1. The Generator Architecture . 36
5.2. Generator Roles . 38
5.3. Generator Framework Layer . 40
5.4. Architecture and Technology Layer . 44
5.5. Generator Layer . 45
5.6. Generator Application Layer . 46

6. Realization 47
6.1. Implementation of the Generator Framework 47
6.2. Implementation of the Architecture and Technology Layer 49
6.3. Implementation of the Generator Layer 50
6.4. Implementation of the Generator Application Layer 50

i

7. Evaluation 55
7.1. Evaluation of the Implementation Regarding the Requirements 55
7.2. Architecture support . 56
7.3. Incremental Code Generation . 57
7.4. Ease of Use . 58
7.5. Knowledge Sharing . 59
7.6. Case Study at KISTERS AG . 60
7.7. Discussion . 64
7.8. Summary . 68

8. Conclusion 69
8.1. Summary . 69
8.2. Future Work . 70

A. Requirements Questionnaire 73

B. Evaluation Sheet 77

Bibliography 81

List of Tables

2.1. Requirements for PAP architecture support. 10
2.2. Requirements for incremental code generation. 11
2.3. Requirements regarding the ease of use. 11
2.4. Requirements supporting the transfer of knowledge between software

developers. 12

3.1. Comparison of the Maven archetype plug-in and Yeoman regarding the
requirements for a code generator. 16

7.1. Overview of the rating for the code generator usage by the software developer. 61
7.2. Overview of the rating for the code generator usage by the software developer. 62
7.3. Overview of the rating for the code generator usage by the software developer. 63

iii

List of Figures

2.1. The Ports and Adapters architecture pattern. 5

4.1. The 4+1 architecture view model [Kru95]. 26
4.2. Viewpoint Groupings [RW11]. 29
4.3. The project model. 31
4.4. The software project model. 32

5.1. The four layered generator architecture. 37
5.2. An overview of the modules contained in an exemplary generator application. 38
5.3. Mapping of roles to generator architecture layers. 39
5.4. Three-phased Generation Workflow . 41
5.5. Overview of the necessary processing steps of template files to generate

the expected output and write it onto disk. 43

6.1. Detailed Generation Workflow . 52
6.2. The model of the software projects in Pagen. 53
6.3. The model of the software system in Pagen. 54

A.1. Requirements Questionnaire page 1 of 4 73
A.2. Requirements Questionnaire page 2 of 4 74
A.3. Requirements Questionnaire page 3 of 4 75
A.4. Requirements Questionnaire page 4 of 4 76

B.1. Evaluation Sheet page 1 of 4 . 77
B.2. Evaluation Sheet page 2 of 4 . 78
B.3. Evaluation Sheet page 3 of 4 . 79
B.4. Evaluation Sheet page 4 of 4 . 80

v

List of Source Codes

6.1. Generator.java . 47
6.2. Prompt.java . 48

vii

1. Introduction

Real programmers don’t comment
their code. It was hard to write,
it should be hard to understand.

Anonymous

Contents
1.1. Structure of this Thesis . 2

Reuse in software engineering is important for companies to reduces software pro-
duction and maintenance cost, to deliver software faster and to increase the quality
of software [Som10]. Code modules, documentation, test data, requirements, design,
code, architectures and whole systems or subsystems as reusable parts for software
[Rin97]. Component-based and service-oriented software engineering are two ways to
reuse software [Vli08]. Domain-driven design proposes the separation of the domain
related parts of a software system from the remaining system [Eva03]. There are multiple
domain-centric architectures, which help to create software systems following this ideas
[Dca]. Microservices are an software architecture which breaks a software system into
small and autonomous services [New15]. Domain-driven design and microservices are
about separation of concern and shall help to reduce the complexity of software systems.
Architecture patterns are a way to reuse the same architecture for multiple systems. The
domain-centric architecture patterns and service-oriented architectures patterns in general
can be reused to achieve separation of concerns. Applying both ideas or similar ones
results in more complex development environments containing many projects. Setting up
a new development environments for a service, which contains separate projects for the
domain and technology, will become a constantly repeating task.
DevOps integrates development and operations [Wil+16]. Continuous delivery and

deployment are two goals, which shall be achieved by it. Using the concept of infrastruc-
ture as code is important to achieve those goals but it adds additional complexity to the
development environment of a software system. The whole environment becomes more
heterogeneous and it is even more costly to create one for small services.
At this point code generators can be helpful to create a development environment

for a small service and its infrastructure, which is developed by following the principles
of domain-driven design . Good support of the used architecture pattern and their
implementation within a company can avoid manual adaptations of the generated code.
But the complexity of the development environment still remains and makes it hard
for software developers to work with it, who are inexperienced with the architecture
and technologies in such an environment. An exemplary application, which uses the

1

1. Introduction

same one, can illustrate the architecture patterns and their components. The same
code generator can be used to make this such an application available to each developer.
In software system with a domain-centric architecture, the technology can change for
different software system. The software developer needs to be able to use the code
generator incrementally and to compose a custom development environment based on
requested technologies.
So in this thesis an incremental code generator is presented for the generation of a

heterogeneous development environments in compliance to an architecture pattern, which
contains software and infrastructure projects.

1.1. Structure of this Thesis
In the next chapter the motivation for a code generator and the detailed problem are
presented. The whole thesis was accompanied by a case study at KISTERS AG. A set
of requirements derived from interviews with employees at KISTERS AG will be also
presented. Afterwards in chapter 3 existing code generators are compared and matched
to the requirements. Chapter 4 introduces architecture viewpoints described by Rozanski
and Woods and extends it by a model for the software development environment. Based
on a better understanding of the development environment in chapter 5 an code generator
architecture and concepts are presented. An implementation of those architecture and
concepts for the KISTETRS AG is presented in chapter 6. This implementation is
then evaluated according to the requirements and by users and developers of the code
generator in chapter 7. The chapter is concluded by a broader discussion about the code
generator. Finally in 8 the results are summarized and future work for improvement of
the code generator is presented.

2

2. The Motivation and Requirements for a Code
Generator

Don’t panic!

Douglas Adams

Contents
2.0.1. Corporate-wide Architecture Patterns 3

2.1. Knowledge Sharing in a Corporate Environment 5
2.2. Motivation for a Code Generator . 6
2.3. The Problem Statement . 6
2.4. Case Study at KISTERS AG . 7
2.5. Requirements for a Code Generator . 7
2.6. Summary . 9

In the introduction three bigger requirements regarding a code generator were already
mentioned. Creation of an development environment supporting the architecture of the
software system, incremental code generation and being able to generate an exemplary
application. Everyone of those aspects will be explained in more detail in this chapter but
first the scope of such a code generator shall be explained. Finally detailed requirements
of a code generator are presented.
Every company or organisation has its own needs. IT Governance shall help to

make IT related decisions in alignment with the business needs [Dub+08]. For software
development domain-specific governance exists. So how software is developed in each
company may differ. For this thesis the scope of the code generator is its application
in a single company. Problems or requirements resulting from software development
processes from different companies does not have to be considered. Software developers
and operationals are working together in a single company, but maybe in different teams.

2.0.1. Corporate-wide Architecture Patterns
Patterns provide a solution to specific problems in software development. Architecture
patterns are a way to reuse software architecture for system having the same or similar
problems. Software architectures following patterns may be easier to talk about with
colleagues than those which do not.
When an architecture pattern is implemented decisions have to be made. First

technologies for the implementation have to be picked. Then the components have to
be organized physically in the development environment. A naming strategy should be
applied for the components, the technology and the physical organization, making it

3

2. The Motivation and Requirements for a Code Generator

for developer easier to find their way in the development environment. When software
development teams in a company face similar problems regarding the architecture using
them same architecture pattern can have a synergistic effect. If a common naming
strategy, code organization and technology is used, developers can better make use of
knowledge gained from former software projects. Additionally best practices regarding
the architecture and the implementation of the components can be shared more easily.
Corporate governance for software development, e.g. regarding the implementation of
security related functions, can be more specific because of a common architecture and
technology. If it is more specific and the impediment to implement it is smaller, the
application of governance rules increases.

In this thesis the Ports and Adapters architecture pattern (PAP) is used as representa-
tive for all architecture patterns. A naming strategy and codeline organization for the
PAP will be implement and utilized for code generation.

The Ports and Adapters pattern is a domain-centric architecture pattern [Coc]. It was
first introduced by Alistair Cockburn under the name Hexagonal Architecture in 1995.
Domain driven design is a design principle focusing on modelling the problem domain
and using the same model within the implementation of the application [Eva03] A good
separation of technology and domain makes the implementation easier and the model more
independent from technology. Three different architecture pattern putting the domain at
the centre separating it from technology are the Ports and Adapters, the Onion and Clean
Architecture Pattern [Dca]. Compared to MVC or the three-tier architecture pattern
domain-centric architecture patterns have more components. Because the domain has to
be coherent the software systems are smaller. Independent of the kind of domain-centric
architecture the basic idea is always the same, keeping the domain at the centre and
keeping it separated from technology, which is needed to provide or consume services.

In figure 2.1 a digram of the PAP and its components is shown. Like other domain-
centric architecture pattern the domain includes the entities and the use cases are at
the core of the pattern. Interface separate the domain from the layer from the technical
parts of the software system. These interfaces are called ports. Implementations of the
interfaces are realizations of the adapter pattern [Gam+95] and are called adapters. Ports
and adapters can distinguished as either primary and secondary. Primary adapters and
ports provide services to other parts of the system or external systems by delegating
to the domain layer. A REST interface is a often used as primary adapter. Secondary
adapter ports consume other services and provide the result to the domain layer. A
database adapter is a often used secondary adapter. By using dependency injection
the domain layer has no dependencies on the surrounding adapters. Additionally the
architecture has a service layer responsible for security and transaction management. By
using the Ports and Adapters architecture pattern small and cohesive functional software
unit can be created. The PAP can be used to achieve modularity in a consistent way
throughout a whole company or product.

4

2.1. Knowledge Sharing in a Corporate Environment

Figure 2.1.: The Ports and Adapters architecture pattern.

2.1. Knowledge Sharing in a Corporate Environment

Knowing best implementation practices for a certain technology can help during the
development of software systems. But best practices only apply to a certain context or
technology. Software development governance may also influence best practices so best
practices can differ slightly between companies. Being able to share the experience from
expert developers in a company as best practices with more inexperienced developer
could increase the software quality. Documenting best practices and governance maybe
necessary, but there is a gap between the documentation and how it can be applied.
Newman proposed the idea of providing best practices and governance through code.
This enables developer to run and explore code. The best way for sharing knowledge
about best practices would be to see the code itself and have it explained by the expert
developer. But this may not always be possible. But an exemplary application containing
important best practices, available to every developer and developed by all would be
a great start to share knowledge The Agile Manifesto favours working software over
comprehensive documentation. So generating an exemplary software application, which

5

2. The Motivation and Requirements for a Code Generator

follows the corporate guidelines and best practices instead of just documenting them,
is a more agile approach for knowledge sharing. However this does not mean that no
documentation is necessary any more. But being able to the experience the guidelines
and best practices applied in the application example will probably help the software
developer to implement them in their own software projects.

2.2. Motivation for a Code Generator
A modular architecture favouring separation of concern can decrease the complexity of
the software system, but it may increase the complexity of its development environment.
If new development environments have to be created on a regular basis this will become a
big overhead. If a convention for code organization and a naming strategy is used this is a
highly repetitive task. Code generators can help software developers and operationals to
minimize the overhead to create the initial development environment. If a common code
organization and naming strategy for an architecture exists, a generator can leverage
those knowledge and provide the tooling for generating architecture components in the
development environment. One or more architecture components are mapped to entities
of the development environment which are often called projects by IDEs and build tools.
In section 4.2 a more thorough definition of a project given.
While the amount of files to be created by a code generator may be biggest at the

beginning it can still be useful later in the development process. Architecture patterns
can contain components which can exists multiple times in a software system with slight
variations. So even at a later time during the software development process a generator
can be useful.
But also the generation of code in a project can be useful Either boilerplate code can

be generated to fasten the software development or example code, which may use specific
technologies and can be a guidance new developers [New15]. If corporate governance rule
regarding to the implementation of specific functions shall be applied then the generated
code following the rules can make the rules more visible for the software developer.
So a code generator, which knows the architecture pattern, its code organization,

naming strategy and possible technologies for implementation of a software system,
can make the initial development environment creation faster, can generated examples
containing best practices as guidance for new developers and can generate code in
compliance to corporate governance.

2.3. The Problem Statement
The main problem this thesis wants to address with a code generator is the fact, that
development environments, which corresponds to the modular architecture of a software
system, can be very complex, especially if they have multiple stakeholders. Dividing a
software system into small services may result in multiple development environments,
which each have to be created by a software development team and managed by them.
From the main problem four sub-problems can be derived either directly or introduced

6

2.4. Case Study at KISTERS AG

by a code generator, which is not addressing the main problem in the right way. First
of all creating development environments can be a repetitive task. A generator which
can only create a new development environment but can not be used to extend one
later on is wasting generation capabilities. Second software developers and operationals
are stakeholder of the development environment. A generator, which supports only one
stakeholder and is not usable by others due to technology limitations, again is wasting
generation capabilities. In worst case to different generator have to be maintained doubling
the amount of work. Third completely inexperienced developers and operationals may
be overwhelmed by complex development environments. If they are just inexperienced
with one technology they have to acquire the knowledge how to implement technologies
in such an environment by themselves, while they may be several other implementations
of the technology created by other developers. And fourth tools which are not build with
ease of use in mind may be more likely rejected by developers and operationals.

2.4. Case Study at KISTERS AG
This thesis was accompanied by a case study at KISTERS AG. Some development teams
at the KISTERS AG use the PAP to separate technology from the domain. A naming
strategy, code organization and proposed technologies are defined for the PAP. A complete
implementation of the PAP is called a slice. If slices become to big it can be separated
into subslices, which ae again an implementation of the PAP.
The Maven archetype plug-in is a software extension for the build tool Maven. It

facilitates the code generation by using so called archetypes. An archetype is a special
Maven project containing the templates files and an XML based description of the
generation process At KISTERS AG a Maven archetype is used to create the development
environment of PAP software systems.
It is used to address the main problem of the problem statement in section 2.3, and

even the third and fourth sub-problem but not the first and second one. First of all it
does not address the main problem sufficiently because the PAP is not supported fully.
Furthermore it can not be used incrementally. So at the beginning it may generate to
much and afterwards it cannot be used any more. The current version of the PAP Maven
archetype does not take the concerns of the operationals stakeholder sufficiently into
account. an exemplary project can be generated for the inexperience stakeholders, but it
can not be excluded for generation making the generator harder to use for experienced
stakeholders because they have to delete unnecessary files first. Ease of use is sufficient
for a command line tool, but providing just a command-line tool for generation may be
not sufficient.

2.5. Requirements for a Code Generator
To better understand the requirements of a code generator, which are necessary to
solve the problem stated above in section 2.3, interviews and an survey with employees
at KISTERS AG were conducted. The questionnaire of the interviews is available in

7

2. The Motivation and Requirements for a Code Generator

appendix A The same questions were used for the survey. Interviewed employees were
architects, developer and tooling developer, especially maintainer of the PAP Maven
archetype.

The first questions aimed to get a better understanding of the problem A. The others
questions helped to specify the requirements for the code generator and were separated
into 4 categories. First the interviewed person were ask about own ideas in general
regarding improvements for code generation with the Maven archetype. Then they were
asked specifically about ideas at the development phases design, coding and testing, about
the tasks of setting up an development environment and refactoring code and about
prototyping and examples. Then questions about basic ideas and generator functions
were asked which could be important for the user of the generator. Additionally a list
of possible generator features should be prioritized Afterwards questions about more
advanced features, which may be expensive to implement and which usefulness was not
validated until then, were asked. In particular these were questions about possible user
interfaces, a model driven generation process allowing to update the generated code
and about refactoring of architecture components. In the last part of the interviews
question regarding the development and maintenance of the generator and templates
were asked. By these questions ideas about separation of responsibilities within the
generator, modelling of the architecture pattern and support for governance should be
validated. At the end a feature list were presented which should be prioritized again.
The questions regarding more specific code generator narrowed automatically the scope
of the generator. The intention behind starting with open questions about own ideas was
to gather new ideas which are not influenced by ideas from others.
From the interviews and the survey many ideas were gathered, some of them tended

to be out of scope for a code generator, some were already implemented by other tools,
which were developed at the same time the interviews took place. Most of the ideas can
be found in the requirements. Stakeholders prioritized generator functions differently
depending on their daily work. Software developers cared less about functions necessary
to implement the generator but more about new technologies, which could be integrated
as new templates into the generator.
All requirements were put in one of the following categories:

• Architecture Support (A) - Table 2.1: The generator has to fully support the
architecture pattern including the naming strategy, code organization and supported
technologies and infrastructure projects making it a heterogeneous development
environment. Additionally the generator has to extendible to support future PAP
implementation.

• Incremental Usage (I) - Table 2.2: The user shall be able to use the code generator
incrementally at any time during the development. Additionally to an initial and
complete generation of an example application a more fain grained generation
process is necessary, allowing the user to select a specific component from PAP and
adding it into an existing project.

• Ease of Use (U) - Table 2.3: The user shall be able to use the code generator as

8

2.6. Summary

easy as possible. For an easy usage installation, updating and execution of the
generator has to be considered.

• Knowledge Sharing (K) - Table 2.4: An generated exemplary application shall
contain best practices to share those between developers. Developers shall be enable
to participate in the development of the exemplary application.

2.6. Summary
Development environments of software system may be complex and time-consuming to
created. If an architecture pattern is used, which provides a naming strategy and code
organization, then a code generator can be used to create development environments
of software system implementing the pattern.. Full architecture support, incremental
usage, ease of use and knowledge sharing are considered to be important requirements
for a code generator which can address the concerns of different stakeholder at different
proficiency level.

9

2. The Motivation and Requirements for a Code Generator

Requirements for PAP architecture support

Epic: The generator supports the PAP and used technologies now and in the future

ID Requirement

A.1 The code generator supports the naming strategy and code organi-
zation of an architecture

A.2 Heterogeneous code generation regarding the purpose of projects,
like architecture components and infrastructure code

A.3 Generation of heterogeneous code regarding technologies like pro-
gramming languages, build tools is possible

A.4 A simple way to extend the generator by new architecture compo-
nents

A.5 A simple way to add new technologies influencing code organization
within a project like build tools

A.6 A simple way to add architecture components implementing new
technologies as exemplary code

A.7 The code generator can update itself automatically
A.8 The user can select a code generator version or otherwise the newest

version is used
A.9 A code generation convention is easing the development new gen-

erators
A.10 A generation life cycle is easing the development of generators
A.11 The location of the generated content can be dynamically deter-

mined
A.12 A generation of a complete PAP slice is possible like the code

generation performed by the PAP Maven archetype
A.13 Single PAP components can be chosen for generation
A.14 Full support of the PAP naming strategy and code organization
A.15 New PAP components, especially for infrastructure (Secondary

JPA Adapter, arc42, Chef) are made available for code generation

Table 2.1.: Requirements for PAP architecture support.

10

2.6. Summary

Requirements for incremental code generation

Epic: The code generator can be used incrementally

ID Requirement

I.1 New projects can be generated for architecture components and
infrastructure code

I.2 New architecture components can be added into existing projects
I.3 Generation of example code is optional
I.4 Configurable project structure by selecting appropriate technologies

for PAP components and infrastructure projects (similar to Spring
initializer)

I.5 Composition of Generators of architecture components and infras-
tructure projects

I.6 Splitting and merging of architecture components on project level
(Refactoring)

Table 2.2.: Requirements for incremental code generation.

Requirements regarding the ease of use

Epic: The code generator is easy to use without prior knowledge about it

ID Requirement

U.1 The generator provides a textual user interface
U.2 The user can interactively input necessary information into the

code generator
U.3 The user can pass all necessary information as arguments into the

code generator
U.4 The generator can be used within IDEs by an IDE plugin (GUI)
U.5 File conflicts are detected by the generator and the user can resolve

them
U.6 Possible projects for generation can be automatically detected by

the code generator
U.7 Possible projects for generation are listed within a repository
U.8 Git is integrated into the code generator to create Git repositories

for generated projects if requested

Table 2.3.: Requirements regarding the ease of use.

11

2. The Motivation and Requirements for a Code Generator

Requirements supporting the transfer of knowledge between software developers

Epic: Software developers shall be able to share implementation best practices

ID Requirement

K.1 Code generation templates contain an exemplary application using
best practices and governance

K.2 Software developers can easily reuse their code as templates for
code generation

K.3 The templates files can be compiled
K.4 The implementation of the code generator and the templates shall

be separated
K.5 The templates can be distributed into multiple small projects
K.6 The templates can be versioned
K.7 The templates can be build, tested and released
K.8 The version of a template used for code generation can be specified

by the user
K.9 The user can select a template version or otherwise the latest

template version is used

Table 2.4.: Requirements supporting the transfer of knowledge between software develop-
ers.

12

3. Related Work

Don’t panic!

Douglas Adams

Contents
3.1. Generator Frameworks . 13

3.1.1. Maven Archetype Plugin . 14
3.1.2. Yeoman . 15
3.1.3. Summary of Generator Framework Evaluation 16

3.2. Framework-specific Code Generators . 16
3.2.1. Spring Roo . 17
3.2.2. JHipster . 18
3.2.3. Ember CLI . 20
3.2.4. Angular CLI . 21
3.2.5. Lightbend Activator . 21

3.3. Summary . 22

In this chapter existing generators and generator frameworks will be examined regarding
the requirements of section 2.5. Generators can be categorized based on their properties.
An important property of an generator is the way how the generated code shall be used.
Before evaluating generators they shall be categorized based on this property. Then
generator frameworks and generators allowing the needed usage of code are evaluated.
Herrington separates code generators into two categories. They can either be active

taking long term responsibility over generated code, which means that changes to
the generated should be avoided in most cases, or they can be passive, meaning the
responsibility about the generated code is directly given to the user right after the
generation [Her03]. The code generator, which will be presented in this thesis, has to
be passive. Most code generator for model-driven software development are active and
don’t have to be included in the evaluation of code generators in this chapter.

3.1. Generator Frameworks

In this section a generator tool and framework will be presented, which can be used to build
generators, especially scaffolding generators. Both are evaluated on their characteristics
to be easily and incrementally usable Additionally the code generation capabilities are
evaluated and if they are sufficient to fulfil the requirements for the architecture support.

13

3. Related Work

3.1.1. Maven Archetype Plugin

The Maven archetype plug-in is a Maven plug-in, which is primarily used to generate
new Maven projects based on project templates although there are no restrictions for any
technology [Mav]. The project templates are called Maven archetypes. Every archetype
contains a XML description file, which describes the information which have to be
imputed by the user and which describes the files inside the template directory which
shall be either just copied or processed by the Apache Velocity Template Engine.

Ease of use: Java and Maven have to be installed before the Maven archetype plug-in
can be used. Once this done the plug-in can be directly executed without prior need
for installation like every other Maven plug-in. At the beginning of the generation an
archetype has to be chosen. It is possible to specify separate versions for the Maven
archetype plug-in and the archetype itself. If no version is specified for the Maven
archetype plug-in then the latest version is used automatically. But it is possible to
specify every released plug-in version. The same is true for the archetype. Then the
information specified in the XML file, which are necessary for the generation, have to be
given. Everything piece of information is requested interactively but it is also possible
pass the selected archetype and the further required information as arguments. The
user has no possibility to manage file conflicts. If the base folder or the Project Object
Model (POM) file, which shall be generated, already exists, then the generation process
will abort. If a file already exists, the existing file is kept and the generation process
continues. But overall the usage is very simple and encourages testing of archetypes.

Code Generation: The files used for generation can be either plain files or Apache
Velocity template files and are bundle with a XML file describing the necessary user input
and the files which shall be used for the generation. An archetype can contain either an
example application or just the minimal set of files mandatory for all applications of this
kind. That is completely up the the archetype developer. It is not possible to exclude
files from generation based on user input. The Apache Velocity template engine is used
internally to transform template files. It is only possible to change the content of files
based on user input. Also a folder and file name convention exists which can be used to
change those names. But it is not possible to modify the directory hierarchy in an other
way. So the folder hierarchy is given by the template files.

There is special support for Maven as build tool. The user has to provide the group
and artefact identifier. The developer of the archetype can rely on the fact that these
information are always available. Additionally the Maven archetype plug-in handles
modules of an reactor build, a feature to compose multiple Maven projects.

Incremental Generation: Due to the fact the even the existence of the base directory
will abort the generation process, the Maven archetype plug-in can only be used to
generate an initial Maven projects. Incremental usage is not possible as long Maven is
used as build tool for the generated project. The Schema of the XML description for

14

3.1. Generator Frameworks

an archetype has a flag for partial generation but there is none documentation available
how this works.

3.1.2. Yeoman

Yeoman is a generator framework written in JavaScript and requires NodeJS as runtime
environment [Yeo]. A Yeoman generator bundles several generators into one executable
unit. Every generator using Yeoman has one main generator and can have multiple sub-
generators. The whole framework is very well documented. The public NPM repository is
used to store generators, which are publicly available for everyone. The Yeoman website
has an overview of all available generators.

Ease of use: The user has to install Yeoman manually via NPM, a NodeJS package
manager, before any generator can be used. A generator has to be installed separately
also via NPM before it can be used. Yeoman not just a generator framework but also a
command line tool, which necessary to execute generators. Every update of Yeoman or
a generator has to be done manually. Breaking changes within Yeoman would prevent
generators from being executed until they are adapted. Yeoman provides an API to
define a set of interactive user queries. The resulting user queries are well structured
and easy to use for the generator user. Yeoman also provides convenient features for
file conflict management. If the generator developer has used the proposed API for
writing files then Yeoman will detect file conflicts automatically and displays the user
the difference between two files in the console. The user can then decide which file to
keep and the generator developer does not have to care about it.

Code Generation: Yeoman has a convention for organizing the code and templates
within an generator. This eases the development of generators. A base generator class
is provided which can be reused and which provides functions as hooks for extension.
These functions are executed in a predefined order and yield a generation life cycle. This
life cylce guides the developer when they are creating a generator. Within the predefined
hooks normal JavaScript code can be written. Therefore Yeoman generators are very
flexible and can be easily adopted. Processing od template files is done into an in-memory
file system via an API first. This allows the Yeoman generator to handle the file conflict
management. Yeoman uses the JavaScript template engine EJS which integrates well into
Yeoman. The API for creating user prompts is easy to use by the generator developer..
Every Yeoman generator consist of one main generator and optionally sub-generators.
Generators can make reuse of other generators.

Incremental Generation: A Yeoman generator can contain multiple sub generators.
These can be used to only generate increments of an application while the main generator
can reuse these sub generators. The composability of generators will allow reusability
and therefore lessens the effort of maintenance. The file conflict management of Yeoman

15

3. Related Work

Requirement Maven Archetype Plugin Yeoman

Easy installation 5 3
Easy/Automated updating 5 4
Interactive usage 4 5
Incremental usage 1 5
Code generation capabilities 2 5
Knowledge sharing via templates 2 2

Table 3.1.: Comparison of the Maven archetype plug-in and Yeoman regarding the re-
quirements for a code generator.

can show the difference between two files and the user can chose between one of the files.
It is not possible to merge two files.

3.1.3. Summary of Generator Framework Evaluation

To have a better overview of the evaluation the Maven archetype plug-in and the Yeoman
generator framework are compared to each other and certain requirements. The rating
can be between 1 and 5. A higher value means better support for requirement. The
result is shown in detail in table 3.1.

The same perquisites as for the code generator presented in this thesis are assumed. It
can be expected that Java and Maven are installed on the computer of the generator
user. This favours the evaluation of the Maven archetype plug-in regarding an easy
installation. Maven handles updates very well, getting the highest rating for easy and
automated updates. Both provide good interactive usage support. The Maven archetype
plug-in accepts every input either interactively or via arguments, while the interactive
capabilities of Yeoman are really great. Regarding incremental usage Yeoman is much
better ans also the code generation capabilities are very advanced. Both of them use
template-based generation approach, but these templates are part of the code generator
and cannot be accessed as easily as it is required for knowledge sharing.

3.2. Framework-specific Code Generators

In this section several generators for specific application frameworks are evaluated and
compared regarding the requirements from section 2.5. These generators were developed
for a specific framework and they contain a naming strategy and codeline organization
for one or more architecture patterns, which can be used with the framework. It is not
expected that these generators will support an arbitrary architecture pattern

16

3.2. Framework-specific Code Generators

3.2.1. Spring Roo

Spring is an enterprise application framework. Spring Roo is a command line shell to
create Spring applications [RP12]. It integrates Maven as build tool.

Ease of use: Spring Roo provides very good documentation online and even a book
[RP12]. Spring Roo is very powerful with a lot of options and is able to modify even
existing files. All shell commands, which have been examined, could display a list of all
possible arguments. The input for a command is always given as arguments and there is
no interactive guidance. The shell provides auto completion for mandatory arguments in
a predefined order without the necessity to start typing the argument name. Optional
arguments have to be typed in partially before auto completion is possible. Next to the
shell Spring Roo starts a web server when it is started. A few commands can be executed
by a web interface. Additionally Spring Roo plug-ins for IntelliJ Idea and Eclipse exists.
Spring Roo add-ons contain the generator source code and the templates. These can

be updated by a shell command. So the updating process is very ease for the user but it
has to be done manually. Since Spring Roo is using OSGi, all add-ons are JAR files. It
is possible to revert all updates going back to the installed version by deleting the newer
JAR files. But it is not easily possible to use Spring Roo in different versions.

Via add-ons it is possible to integrate other tools. Spring Roo already has an add-on
for Maven and for Git. The Maven add-on can be used to build the project by using the
shell and the Git add-on can automatically commit changes triggered by other commands
if the Git add-on is activated.

Incremental Generation: Depending on the state of the project the possibilities of code
generation differ. First a new project has to be initialized based on project meta data.
After that a very fine-grained and incremental usage of the tool is possible but a domain
model is necessary. For example after executing a command, which adds the Spring
MVC module to the project, new commands to add controllers or views or start the web
application are available. The generated files contain configuration or just the boilerplate
code necessary before logic can be added. The web add-on can also generate a scaffold
for an entity creating the view, the controller and code for accessing the database, which
are necessary for CRUD operations. Some of the commands does not trigger a generation
but an adaptation of existing files, e.g. the logging level can be changed by a command
which will not trigger a new generation of the logging property file but just an adaptation
of the logging level.

Spring Roo can generate services, repositories, controllers and views. It works well if a
domain model exists.

Knowledge Sharing and Governance via Code Generation: By using a domain model
the generated files are useful for the problem domain, but they lack deeper logic beyond
CRUD. Several Spring Roo commands can be combined into a script to generate an

17

3. Related Work

application for an exemplary domain model, but it is not possible to generate a complete
application containing some more complex logic.
There is also no mechanism to extend existing add-ons. So if own best practices or

governance shall be integrated, which differs from the one Spring Roo proposes, then
existing add-ons have to be rewritten or new ones created. But it is possible to extend
Spring Roo by add-ons. However, this requires deeper knowledge of the tool beyond its
usage. Spring Roo uses templates and a model driven approach to alter Java code. But
using the model driven approach is more complex then the template based. The templates
or model transformations are part of the add-on and are released together. Whenever
templates are modified the whole add-on has to be build and the resulting artefact has
to be copied into the installation folder of Spring Roo before the modifications can be
used. Some of the templates in the existing add-ons contain place holder and some use
fixed strings.

Architecture support: Like the Spring framework itself, the core module of Spring Roo
does not propose any architecture. But add-ons like the one for Spring MVC support
the MVC or Active Record architecture pattern. As build tool only Maven can be used.
Spring Roo only supports an application stored in a single Maven project. Mostly Java,
JSP or XML files are generated, but it depends on the templates. AntLR is used to
modify Java files.
To use different architecture patterns or technology Spring Roo has to be extend

by add-ons. Core libraries, which eases the development of own code generators, are
available though.

3.2.2. JHipster

JHipster is a generator for a web application using Spring as back end and AngularJS
as front end technology [Jhi]. Additionally it provides further tooling and subsystems
helpful to run the generated application.
In contrast most of the other generators presented in this chapter, JHipster can be

used to generate a working application containing functionality which is commonly used
by web applications like user registration and authentication, and application monitoring.
JHipster supports many different technologies like databases or for caching, messaging
and logging and also a few for the front end. It is also possible to choose between Maven
and Gradle as build and dependency management tool. JHipster can also be used to
deploy the application to supported cloud providers.

Since JHipster supports many technologies and the initial generated application contains
already often used functionality its quite a huge application right from the beginning.
Even configuration files for not used technologies are generated. This makes the whole
project quite complex for beginners. JHipster may focus more on advanced users who
are already familiar with the technology.

18

3.2. Framework-specific Code Generators

Ease of use: JHipster is based on Yeoman so it needs NodeJS as runtime environment.
It can be installed via the Yarn or NPM package manager for NodeJS. Additionally a
Vagrant managed virtual machine and a Docker container are available having JHipster
installed. Since JHipster is based on Yeoman it can be used as a command line tool.
Necessary input for JHipster can be done interactively. The user will be directed through
the necessary information. This makes it easier for the user to directly execute JHipster
without the need to study the help before. Except for one back end related architecture
decision right at the beginning most of te other decisions are technology related. To build,
test and run the generated application JHipster provides a GUI application. JHipster
also offers a domain specific language (DSL) to model a domain. JHipster provides good
documentation and supplementary tools to model the domain and use it as input for
the generator. From the Yeoman generator framework JHipster also has the conflict
management showing users the difference between conflicting files and letting them decide
which to take.

Incremental Generation: Initially a Spring and AngularJS application can be generated
by using the main generator. The generated application does not contain domain logic
but it provides functionality for user authentication and an administration dashboard for
monitoring the application. JHipster provides additional generators for incremental usage.
The most complex of those is the so called entity generator. It alters the database and
creates back end and front end code for CRUD functions. This generation is similar to the
scaffolding from Spring Roo. If microservices are the preferred architecture then first a
gateway application has to be created by using the main generator. Afterwards the main
generator can be used incrementally to add more microservices to the overall application.
For service discovery, configuration management and logging JHipster provides Docker
container. The generated applications are configured to work with these containers.

Knowledge Sharing and Governance via Code Generation: JHipster generates not
just a new project structure but already an application containing logic for registering
users and to maintain the application via an dashboard. These are already best practices
for Spring and AngularJS applications using common technologies. JHipster provides a
possibility to extend its functionality by modules. These modules can be executed as
standalone generator with access to project specific information provided by JHipster or
they can be used as part of the main generator via hooks. JHipster uses the template
based generation approach provided by the Yeoman generator framework.

Architecture support: JHipster supports two different back end architectures. The back
end can be either monolithic or can be distributed into microservices. Other architectures
are not supported. Due to the possibility to extend JHipster by modules it is possible to
extend the architecture implementation by new technologies and integration into new
build tools.

19

3. Related Work

3.2.3. Ember CLI

Ember is a JavaScript framework for web applications [Emb]. Ember CLI is a command
line tool for generating Ember projects. It uses a predefined set of technologies for
building the application, as template engines, handling CSS files and more. Generation
is done based on a code organization convention and a naming strategy. Ember CLI
provides good documentation, both for its usage and extension. The naming convention
and project structure are explained in the documentation.

Ease of use: Ember and Ember CLI both require the NodeJS JavaScript runtime
environment. So Ember CLI users will have NodeJs installed because of Ember itself.
The Ember CLI can only be used via its command line interface. It provides commands
for the initial project creation, for subsequent code generation and for building, testing
and running the application. Via a help command a description of every command
and generator can be displayed in the console including the possible arguments. There
is no code completion for CLI commands or the possibility to interactively input user
information. So before executing a new command or generator the documentation has
to be checked. There are many generators available which make the integrated help
documentation hard to read. The number of generators can even increase with custom
ones. Installing and updating Ember CLI can be done manually via NPM or any other
NodeJS package manager. Every developer has to check them self if a new version is
available. So it may happen that developers working on the same project are using
different Ember CLI versions. Ember CLI detects file conflicts and can show the difference
between two conflicting files. The user can decide which file to take.

Incremental Generation: The initial creation of a new project and subsequent code
generation are separated into single commands. By the initial generation a new Ember
project containing the complete project structure and a web application showing a
welcome screen is generated. At this point it is possible to run the application to have a
look at the welcome screen. While it does not contain any logic it demonstrates a running
application. The subsequent generation is done by so called blueprints. Blueprints are
code snippet generators for the Ember framework and architecture components. They
are intended for an incremental usage of the Ember CLI. For example whenever a new
Ember controller is needed it can be generated by a controller blueprint.

Knowledge Sharing and Governance via Code Generation: The initial project gener-
ation contains a very simple application showing a welcome screen. By extending Ember
CLI with new generator add-ons it is possible create own generators which provide more
value to software developers. These custom generators can be used for implementation
governance or to show best practices. It is also possible to create a new generator which
can generate an example application based on an argument. Every add-on has to be
installed once per project. Afterwards it can be used by any developer. The version of a
generator add-on is also set per project. Within an add-on multiple generators can be

20

3.2. Framework-specific Code Generators

added. A project structure for generators exist as convention helping developers to build
own generators. Ember CLI contains a command to generate a new add-on and new
generators including folders for tests. This makes it easy to create new generators. A
template based approach is used for generation. So the templates are very similar to the
real code. Although they can not be tested right away because they are no real source
code any more. Ember CLI provides hooks for developing add-ons and code generators.
This hooks yield a generation life cycle which is a guidance for the development of
generators. These hooks are meant for more complex tasks then just code generation.
So they provide much flexibility but also add unnecessary complexity for simple tasks.
Within these hooks it is possible to execute other Ember CLI commands or generators,
which makes it possible to compose bigger generators by reusing smaller ones.

Architecture support: Out of the box Ember CLI only supports the architecture used
by the Ember framework. With the Ember architecture at its core it additionally comes
with a naming and code organization convention. For developing own generator add-ons
Ember CLI provides resolver helping to generate files in compliance to the used naming
strategy. Theoretically by extending Ember CLI with new generators a customized
architecture, technologies, naming strategy and code organization can be implemented.
But then the existing generators and resolvers can not be used any more and have to be
reimplemented if they are still necessary.

3.2.4. Angular CLI

Angular 2 is a JavaScript single page application (SPA) web framework. Angular CLI is
a command line tool able to generate the project structure and framework components
necessary for an Angular 2 based web application. The Angular CLI is based on Ember
CLI. So its usage and its capabilities for incremental generation, knowledge sharing,
governance and architecture support are the same as with Ember CLI. But Angular
CLI uses its own architecture, technologies, code organization and naming convention.
Reusable generator features from Ember CLI are reused by the Angular CLI to come up
with just the commands and generators necessary for and Angular 2 application.

3.2.5. Lightbend Activator

The Lightbend Activator is a tool for generating applications and building them using the
sbt build tool [Lig]. Sbt, the acronym of simple build tool, is a build tool for Scala and
Java applications. Lightbend Activator can be either used as command line application
ar via a web user interface. Basically there are two different kind of generators within
the Lightbend Activator. Either tutorials containing an example application can be
generated or so called seed projects, which mostly just contain a build file including
dependencies and a code organization. It is not possible to provide some kind of input
like the application name so the generation is just a simple copying of files. Only the
target folder can be specified. Every generator has to use sbt or otherwise Lightbend
Activator will not be able to build, test or run the generated application. Since the files

21

3. Related Work

are just copied, the templates are the whole generator. A template is an sbt project, a
tutorial HTML file, a license and some meta data. And the Lightbend Activator is a
collection of multiple templates.

Ease of use: Lightbend Activator provides a web user interface (UI) which can be used
to generate new applications and to build, test and run them. It is even possible to
inspect the generated code within the browser. Created projects are remembered and
can be opened The web ui can be used to select a template and generate a project. The
templates can be filtered using some predefined tags. After a project is generated it can
be build, tested or run from within the web UI or the generated folders and files can be
inspected.

Incremental Generation: The seed applications are intended to generate the boilerplate
code for a new project using a specific set of technology. Therefore they do not contain
an example application or any kind of logic, but just the mandatory files, e.g. build
files, source code or configuration. All examined generators have only generated a single
project. An incremental usage is not intended by the Lightbend Activator. It would be
possible to create multiple generators for the architecture component, but it could result
in code duplication of the template files.

Knowledge Sharing and Governance via Code Generation: The example applications
have the intention to help software developers get familiar with a specific set of technologies.
They contain some explanation of the internal code organization and the implementation
using these technologies. They are mostly simple applications demonstrating core
functionalities of technologies and how they can be combined. So their purpose is sharing
knowledge about the usage of technology, a good code organization and how to configure
the sbt build tool for this particular example. The explanation of the tutorial is added
as an HTML file and will be integrated into the web UI. Since the template projects are
plain sbt projects with no further configuration they can be tested by just building the
project. New templates can only be added globally as GitHub repository. There is no
possibility to add private templates which are only accessible within an company. A web
hook can be used for automatic updates when ever changes in the example application
are added to the GitHub repository.

Architecture support: There is no special support for architectures. Since the template
files are normal projects any architecture can be implemented. Although like said before
there is no possibility to provide any input to change an architecture based on the needs
of the user. So for every variation an own generator has to be created.

3.3. Summary
In this section several generator frameworks and generators were evaluated regarding the
requirements form section 2.5.

22

3.3. Summary

Regarding the frameworks the Yeoman generator framework provides the necessary
flexibility for code generation, but it requires its user to install the NodeJS runtime
environment and it uses the NPM package manager. At KISTERS AG every software
developer has the Java runtime environment and Maven installed but only a few NodeJS.
Additionally KISTERS does not have an own NPM Repository, but only a Maven
Repository. As an alternative NPM could be used to fetch packages from Git, but this
makes the installation of generators more complicated. Generators are not updated
automatically which may lead to an usage of outdated generators and slows down
knowledge sharing and governance via code generation. And last there is no architecture
and technology specific support for generator development which has to be developed
either way.

The Lightbend Activator is the best fit for an easy knowledge sharing, but generators
can only be added globally. All other evaluated generators support a specific framework,
architecture pattern and a set of chosen technologies necessary to build and run applica-
tions using the framework. None of the generators fully matched the requirements for a
code generator, but some of them had good support for incremental code generation and
could easily be extended. Because the effort for adapting on of the generators and adding
PAP support is still large and they all have some short comings for easy knowledge
sharing and governance, none of them was chosen as basis for the generator developed in
this thesis.

23

4. Code Generation Concepts for
Operation-sensitive Development Environments

There are no facts,
only interpretations.

Friedrich Nietzsche

Contents
4.1. Background: Architecture Views and Viewpoints 25

4.1.1. The 4+1 Architectural by Kruchten 26
4.1.2. The Architectural View Model by Rozanski and Woods 28

4.2. Software Project Model . 30
4.3. Stakeholders . 32
4.4. Summary . 33

The code generators presented in the last chapter could generate different parts of a
software system. Most of them support the generation of an initial project including the
proper configuration of a build tool and an organization of the source code files and other
resources and they support the generation of architecture pattern components which is
supported by the framework the generator was developed for.

To allow a better differentiation of the elements, which can be generated, two architec-
ture view model are introduced and on of them is extended by missing models. This helps
to understand the intention of the code generator developed for this thesis and at which
point the code generator has to provide additional support to enable the generation of
needed architecture pattern components and technologies.

4.1. Background: Architecture Views and Viewpoints
Modelling the whole architecture of a software system into view will make the model
hard to read and to maintain [RW11]. ISO 42010, a standard for a software system
architecture description, defines views as a representation of those parts of a software
system architecture, which are related to a stakeholder concern [Iso]. A stakeholder is
defined by ISO 42010 as a team, individual or organization having an interest in a system
and a concern is defined as an interest in a system relevant to one or more stakeholders
[Iso]. To make it easier for software architects and stakeholders to create and understand
views, ISO 42010 defines the concept of viewpoints as conventions for those tasks. The
generated code has to address multiple concerns of different stakeholders. The ISO 42010
defines only a standard for describing views and viewpoints but no viewpoints itself. In

25

4. Code Generation Concepts for Operation-sensitive Development Environments

this section two viewpoint models are introduced which will be used later in this chapter
to map stakeholders, their concerns and generated code to those viewpoints.

4.1.1. The 4+1 Architectural by Kruchten

In 1995 Kruchten proposed a viewpoint model of software architecture to represent
architectural structure for common stakeholder concerns. At this time the concept of
viewpoints and the distinction between views and viewpoints did not exists explicitly and
the term view was used for views and viewpoints. The model consists of five components
and is shown in figure 4.1. For each view an own notation was proposed. At that time
UML was not widely known and did not became a standard until 1997 [Col+97]. In
2007 a white paper was published which proposed a mapping of UML 2 diagrams to
the views presented by Kruchten [Muc07]. In the centre of the architectural model are
the scenarios or nowadays mostly called use cases. The four views are separated into
conceptual views, which are the logical and the process view, and into physical views,
which are the development and the deployment/physical view. Stakeholders and their
concerns are shown in figure 4.1 for each of the four views.

Figure 4.1.: The 4+1 architecture view model [Kru95].

The logical view is a structural model of the problem domain supporting the functional
requirements [Kru95]. Structural diagrams and notations used for this view should support
abstraction and decomposition. For domain centric architectures the domain model would

26

4.1. Background: Architecture Views and Viewpoints

be part of the logical view. Because the problem domains are very different for every
software project the generator cannot easily provide domain specific support without
being very specific about the used technologies. It can however generate components of
an architecture pattern used for modelling this view with an exemplary problem domain
to show best practices and tools useful for the implementation. But this code would
not match the uses cases and has to be deleted shortly after partially or completely.
IDEs and other programming language specific tools provide good support for generating
packages and classes to implement the model of the logical view. UML 2 class, object,
package, state and composite structure diagrams would be a good fit for modelling the
logical view [Muc07]. So the logical view is about modelling the problem domain.

In the process view the execution of tasks and their collaboration are modelled [Kru95].
Tasks are the operation of the main abstractions modelled in the logical view and are
grouped into processes. Within the process view non-functional requirements and aspects
like performance, concurrency, and distribution can be modelled. Modelling within this
can happen on different levels. On the highest level processes are used to model a network
running across hardware. Like the process view this one also depends on requirements
which are very different for various projects. The UML 2 sequence, communication,
activity, timing and interaction diagrams can be used for modelling the process view
[Muc07]. So the process view is about mapping entities from the logical view to executable
units.
The development view focuses on the software module organization within the devel-

opment environment [Kru95]. Here software modules are the entities of the development
view and are organized based on their physical packaging as deployment units. Here
modelling is done at the physical level in contrast to the logical view, which is at the
conceptual level. Within the development view requirements which ease the development
and deployment are taken into account. In contrast to the other views, this one only
indirectly influenced by the use cases and more about the concerns of the software
developers. The UML 2 component diagrams can be used for modelling the development
view [Muc07]. So the development is about composing entities from the logical view into
software modules and mapping those to physical deployment units.

In the physical view the execution of software on computers, called nodes, is modelled
[Kru95]. The physical view, which is sometimes also called deployment view, focuses on
the hardware topology, its provisioning and how the components are distributed. Similar
to the process view non-functional requirements and aspects of systems like availability,
reliability, performance and scalability are considered. Infrastructure as Code (IaC)
is an approach which treats infrastructure as source code and applies best practices
from software development [Mor15]. IaC enables the automation of provisioning and
deployment. It can be used to implement a runtime platform model. With provisioning
tools like Chef, Puppet, Ansible or Salt, which support infrastructure as code, the
distribution and provisioning can be put into source code and becomes part of the
development environment. Because these requirements differ between software projects
the nodes, processes, tasks and deployment units, which are represented in this view, can
not be generated. But it is possible to generate the boilerplate code of technologies, like

27

4. Code Generation Concepts for Operation-sensitive Development Environments

Chef, which are used to implement this view. In UML2 Deployment Diagrams can be
used to model the physical view [Muc07]. So the physical view is about mapping the
software as executable units from the process view to physical nodes.

The logical, process and physical view take requirements related to product as outcome
of a software project into account. The development view takes requirements from the
development process into account which does not, or only little, emerge from the software
system itself but more from the organisation, the chosen architecture and technology, and
the people involved in the software development process, especially software architects,
developers and testers. An organisation, which reuses an architecture pattern and
associated technologies throughout multiple software projects, can benefit from a code
generator, which enables the generation of software modules, infrastructure code modules
and other shared physical modules and takes care of the organization of these modules
in the development environment.

4.1.2. The Architectural View Model by Rozanski and Woods
Rozanski and Woods developed another view model which is extending the one by
Kruchten [RW11]. In addition it uses the definition of views and viewpoints from the
ISO 42010 standard. So in this section and in all following the term viewpoint will be
used according to the definition to replace the term view and how it was used in the last
section. Views are structures a software system, which use the conventions provided by a
viewpoint.

The view model by Rozanski and Woods contains seven viewpoints, which can be used
to create and understand the views of a software system. It is shown in figure 4.2. The
intentions and responsibilities of views are well described within the viewpoints. The
first viewpoint is the context viewpoint which defines interactions between the system
and its environment. Furthermore the view model contains the functional, information
and concurrency viewpoints, which are grouped together. Functional and concurrency
viewpoints are similar to the logical and process viewpoints by Kruchten. The information
viewpoint is a new convention for a data-centric view of a software system. The next
viewpoint is the development view, which is basically the same as in the model by
Kruchten. The last two viewpoints are the deployment and the operational viewpoint,
which are also grouped together. Those two separate the concerns of deploying a software
system and running it.

Not all viewpoints are important for the code generator presented by this thesis. So at
this point only the functional, development, and deployment viewpoint will be explained
in more detail. It is not ruled out that code generation is not possible for the other
viewpoints but the code generator will not explicitly support it. Rozanski and Woods
defined several stakeholders. Such a detailed distinction of stakeholders is not necessary
fo this thesis. So only the ones, which are important for the code generator, will be
mentioned explicitly.
The functional viewpoint contains the functional runtime elements [RW11]. For each

of those their responsibility and interfaces are described and their interactions among
each other. Often it is the core architecture structure and influences others like the

28

4.1. Background: Architecture Views and Viewpoints

Figure 4.2.: Viewpoint Groupings [RW11].

information, concurrency or deployment structure. The elements of a functional structure
model are the the functional runtime elements, their interfaces, connectors and external
entities. The UML component diagram is mentioned as a good notation for this view.
Architecture patterns can be used as template for the structure of a functional view.
Design characteristics are coupling, cohesion, extensibility among others. The functional
view is important to every stakeholder. The code generator shall generate an exemplary
application to illustrate best practices for software development and implementation
of preferred technologies. This makes the functional viewpoint important for the code
generator. But the functional view from the exemplary application is a different one as
the one from the software system, which the developer has to implement. Therefore the
generated content belonging to this view has to be deleted, partial or complete.
The development viewpoint contains a convention for structuring the development

environment, which includes the organization of source code files into modules to build,
test and release them. Different models are part of the development viewpoint. The
module structure model can be used to organize source code files into modules. Those
modules can be grouped into layers to manage the dependencies between them. The
UML component diagram with packages is a good notation for this model. Codeline
organization is defined as the directory structure of source code, which is managed
by a configuration management system (CVS), with the intention to build, test, and
release the source code as binaries. Rozanski and Woods did not suggest a particular
notation for the codeline model because in most cases using text, tables, and a few clear
diagrams to explain the convention, how the source code files should be organized, should
suffice. Software developers, testers, and product engineers, who are responsible for the

29

4. Code Generation Concepts for Operation-sensitive Development Environments

deployment of the software system, are the stakeholders of the development view. The
components of a software architecture pattern can be used as modules in the module
structure model. The naming strategy and code organization of an architecture pattern
can be used as codeline organization. These two facts make the development viewpoint
very important for the code generator presented in this thesis.

The deployment view is a model of the environment into which the resulting binaries of
the system, which are modelled by the development view, are deployed. The core model
is called the runtime platform model and contains hardware nodes for processing, storage,
and clients and network links between those. Additionally the functional elements are
mapped to processing nodes. UML deployment diagrams can be used as a notation
for this model. If infrastructure becomes code, it has to be managed by a CVS and
becomes therefore part of the development environment. The code generator can generate
exemplary IaC files, but the same as said about the functional viewpoint applies here.

4.2. Software Project Model

Rozanski and Woods did not define an explicit model using a domain language for the
development viewpoint. In this section a model of the development environment is
presented, which can be used as basis for a codeline organization. Additionally IaC makes
the operational also a stakeholder of the development viewpoint.

The codeline model in the development viewpoint has the task to show the organization
of the source code files. In particular how it should be build, tested and released and
which tools shall be used for this purpose. Text, tables and simple diagrams are assumed
to be sufficient in most cases for this model. The code generator has to generate code
on accordance to the codeline model. A language and defined terms of the content,
which has to be generated, ease the communication between software developer and code
generator. Therefore in this section a model and its elements are defined, which can be
used as a notation for a codeline model.
The development environment of a software system contains source code files, build

scripts, documentation, and other files like images. These files can be organized in
directories, which are a hierarchical structure. Build tools like Maven or Gradle, or IDEs
like Eclipse, IntelliJ Idea and Visual Studio allow the decomposition of the development
environment of a software system into so-called projects. The term project is often used
for the development environment of a software system or its decomposed parts, but
there is no consistent definition. Here a project is a entity to organize the development
environment hierarchically, which is shown in figure 4.3. Every development environment
starts with a root project, which can contain other sub-projects. A project can contain
meta information about the project. In most cases it also contains a build script, which
will be used to build, test, and release the source code files of the project and sub-
projects. On developer computers a project is represented physically by a directory. The
organization of the project in directories can map the hierarchical order of the projects
but it doesn’t has to. This definition of a project can also be mapped to the organization
in cloud development environments like the ones provided by Eclipse Che [Ecl].

30

4.2. Software Project Model

Figure 4.3.: The project model.

Based on this definition of a project and its hierarchical composition a software project
model was developed to achieve a better understanding of the different project types,
which can exists in a development environment. This model shown in figure 4.4 and
contains common types of projects and defines the relationships between them. The root
project is called the software system project and can contain other types of projects.
First there are the software projects containing one or multiple modules from the module
structure viewpoint. The number of software projects depends on the preferences of
the software developers and can be even distinct for the same architecture pattern,
which defines modules. The next kind of projects are the software deployment projects.
Projects building, testing, and releasing a software, which can be executed as a single
process, belong to this kind. A integration test project which is testing the interaction
between the software modules but mocking any other system is an example for a software
deployment project. System deployment projects are about system-wide deployment and
testing. Acceptance and performance test projects but also IaC projects like chef recipes
are software deployment projects. Finally there are documentation and build projects
which are grouped together as supplement projects in 4.4. A build pipeline project or a
project providing common build configuration are two possibilities for supplement project
related to software build concerns. The software system project can contain an arbitrary
number of the sub-projects. Between those sub-projects certain relationships are common.
Software deployment project always depend on the software modules or other software
deployment project. System deployment project always depends on one or more software
deployment project. Those dependencies are illustrated in 4.4. Only dependencies, which
could always be observed in an exemplary software system were added to the model.
So the absence of dependencies in the model does not mean that there may not be
dependencies between two projects. If a software system project contains a project for a
common build tool configuration than every project containing the using the same build
tool may depend on this supplement project.

Regarding viewpoints software projects are related to the functional viewpoint, software
deployment projects to the development viewpoint and system deployment projects to
the deployment viewpoint. All these viewpoints have different stakeholders. So knowing
the kind of project, which shall be generated, also helps to find the stakeholder, which

31

4. Code Generation Concepts for Operation-sensitive Development Environments

Figure 4.4.: The software project model.

benefits most likely from the generator functionality to generate such a project.

4.3. Stakeholders

There are multiple stakeholders, which are having different concerns for the content
generated by the code generator. These concerns influence the functionality of different
modules of the code generator. To better understand the intention of the generator
concepts the stakeholders and their concerns will be explained first. The generator
has three main stakeholders. These are the software developer, the software architect,
the operational and the generator developer. The software developer has to implement
functional requirements following an architecture and wants to use the generator for
the daily development work throughout the whole software development phase. The
operational has to implement infrastructure projects automating the provisioning and
operation of the software system. Both want the generator to just generate needed code
and nothing more. The generator has be easy to use without prior knowledge. Updates
of the generator and the templates shall be as easy as possible. The software developer
and operational shall be able to make own modifications of the templates and directly
use them. If the modification may have value for others there has to be a possibility to
easily share them with others. So mainly from section 2.5 the requirements about ease of
use, incremental code generation and knowledge sharing are important for the software
developer and the operational. While both have the same concerns different viewpoints
are important to them resulting in a heterogeneous development environment, not only
regarding used technologies but also stakeholder concerns.

The software architect wants the developers to generate code according to the specific
architecture of a software project following an architecture pattern. The code generator
has to be able to generate code which implements the chosen technology and follow
a naming strategy and codeline organization of the architecture pattern. Therefore

32

4.4. Summary

a fine-grained selection of the generated code has to be available. If technologies are
missing and they are needed more often than in just one project, it shall be easy to
add this technology to the existing generator as a selectable option for code generation.
Modifications of the templates or the generator shall be used by the developer as fast as
possible. So from section 2.5 the requirements about incremental code generation and
architecture and technology support are important for the software architect.
The generator developer wants to easily extend and adapt the generator if necessary

according to new requirements for the generator but also to integrate corporate-wide
used architecture patterns and technologies. Adaptations to the templates by other shall
be easy to integrate. So from section 2.5 the requirements about generator adaptation
and the support for an architecture pattern and the needed technology are important for
the generator developer.
These four stakeholders can be mapped to the viewpoints described in section 4.1.2.

The architect has to model the necessary views based on the viewpoints. These views
needs to be implemented by the developer or operational in accordance to the development
view. For the software developer the functional, information and concurrency view point
are important. The generated code will be used to implement the elements in the
functional view, interacting in accordance to the concurrency view and following the
flow of information from the informational view. For the operational the deployment
and the operational view are important. The generated code and projects will be used
to implement the distribution of deployment units in accordance to the nodes in the
deployment view. The code generated by the software developer or operational has to be
organized in projects in compliance to the development view. The generator developer
has to extend the generator if it does not support an architecture element within the
development view or an technology added by the architect.

4.4. Summary
Different stakeholders and with different concerns will use the code generator. Viewpoints
refer to those concerns and help to understand, what problems the generated content
has to address. For the functional viewpoint and deployment viewpoint exemplary and
boilerplate code has to be generated. Those code has to be organized in the development
environment, which can be very heterogeneous because modules from two different
viewpoints with different concerns are part of it.. The software project model presented
in this chapter helps to organize and understand the development environment. This
knowledge can be used to come up with an architecture and concepts for a code generator.

33

5. Code Generator Architecture and Concepts

There are no facts,
only interpretations.

Friedrich Nietzsche

Contents
5.1. The Generator Architecture . 36
5.2. Generator Roles . 38
5.3. Generator Framework Layer . 40

5.3.1. Generation Life cycle . 40
5.3.2. Composable Generators . 40
5.3.3. User Query API . 41
5.3.4. Intermediate File Storage . 42
5.3.5. Generation Domain Specific Language 44

5.4. Architecture and Technology Layer . 44
5.5. Generator Layer . 45

5.5.1. Separation of the Generator and the Templates 45
5.5.2. Software Project as Template . 46

5.6. Generator Application Layer . 46

In this chapter concepts for an incremental and heterogeneous code generator and
its architecture to implement the requirements stated in section 2.5 will be presented.
The intention of the generator is to enable software developers and operationals to
incrementally generate a development environment matching the architecture and re-
quirements of a software system. Optional an exemplary application shall be generated
into the development environment helping to share best practices and governance for
implementing particular technologies among software developers. The expected benefit is
to fasten the development of software system and to share knowledge and governance
about the implementation of technologies between developers. Ease of use, incremental
code generation, architecture and technology support and knowledge sharing are the four
principles which are behind the concepts and architecture.

The primary user of the code generator is the software developer and the operationals.
Most concepts presented in this chapter intend to make the result of the code generator
directly or indirectly more valuable to the developer. The result of the code generator
will be generated source code files, configuration files and whole software projects. The
generator shall be made more valuable by having a wide range of well maintained and
useful templates and by enabling the user to generated only the parts needed for the
current task. The value of the code generator for developers strongly depends on the the
quality and the usefulness of templates. If code is generated which does not work or does

35

5. Code Generator Architecture and Concepts

not work the way it is expected, the developer will not trust the content generated from
templates. A good way to determine if it works is to compile, test and run the generated
content. Content created by templates is useful for the developer if it can be generated
in the right place and if the content uses the right technology which can be used to solve
the current problem. So creating new templates, maintaining them and integrating them
in the generator framework should be as easy as possible.

First the generator architecture and its modules are presented. Afterwards stakeholders
are mapped to roles, which are related to the development and usage of the code generator.
This shall help to better understand the scope of the concepts present here and its main
beneficiaries. Afterwards the single layers from the generator architecture are presented
from bottom to top

5.1. The Generator Architecture

In this section the architecture of the code generator will be explained. Projects containing
architecture components and infrastructure code have to be generated to fasten software
development. Therefore a set of technologies has to be selected, which shall be used to
implement the architecture and infrastructure. Neither the architecture nor the technology
is fixed and my vary for different software system, which results in a heterogeneous
development environment. Another goal is the generation of an exemplary application.
To implement the functionality of this application another set of technologies has to be
used. This technology will be part of the templates and not the generator and is limited
to a single project. This means that the generated technology implementation is not
affected by the occurrence of other projects and does not affect them. So code generation
happens on two different levels for two different purposes.
For the code generator a layered architecture was chosen. Layers encapsulate a set of

coherent functionality and minimize the dependencies between them [Fow02]. Different
stakeholders will participate at the development of the code generator. The layers shall
also give them guidance which parts of the code generator they want to extend. The
code generator is separated into four layers. Each has its own purpose and addresses the
concerns of a particular stakeholder. An upper layer may have dependencies to a lower
one but not the other way around Figure 5.1 shows the four layers.

Frameworks are incomplete applications providing interfaces to customize them to ones
needs [FS97]. Architecture and an exemplary applications are considered to be customiza-
tions of this code generator. The bottom layer is called the generator framework layer
containing the functionality for developing code generators matching the requirements
from section 2.5. APIs and a code generation life cycle will be provided by this layer.
This layer is completely independent from the architecture patterns and technologies,
which may be used in the generated code.

The second layer is called the architecture and technology layer and has two purposes.
On the one hand it contains the naming strategy and a convention for codeline organization
of architecture patterns. On the other hands it contains common functions necessary
to deal with technologies which influence the codeline organization or are influenced by

36

5.1. The Generator Architecture

Figure 5.1.: The four layered generator architecture.

it. An example would be an API to modify Maven POM files based on the fact which
architecture components are present in the development environment.

The third layer is called the generator layer. It contains the actual generator imple-
mentation and the templates. Within the context of this code generator a generator is
defined as a executable piece of code, which is used to generate content and which follows
the generator life cylce provided by the generator framework. Another thing to mention
is the fact that templates will be stored separated from the generators which is requested
by requirement K.4. This is shown in figure 5.1 which illustrates that the templates and
generators are separate entities.

And the fourth and last layer is the generator application layer. In contrast to a single
generator, several generators are bundled together and provided as a code generator
application. According to requirement A.7 a code generator application has to be able to
update itself. The generator application will be a wrapper for generators providing this
capability.

Figure 5.2 shows a coarse view of the architecture of an generator application. This
application contains three generators as an example. Depending on the complexity of the
architecture pattern this can be much more. In this example every generator has its own
template files for the generation process. APIs providing a naming strategy and codeline
organization of an architecture pattern and supporting two technologies are available.
Common generator functions are usable by the generator framework.

37

5. Code Generator Architecture and Concepts

Figure 5.2.: An overview of the modules contained in an exemplary generator application.

5.2. Generator Roles

Every of the four layers defined in section section 5.1 has to be developed by some one
and will be used by some one. This categorization of interactions with the generator
is a coarse one but it helps to keep in mind who is using the modules of a layer. The
stakeholders of the generator are software architects, software developers, operationals
and tooling developers and are described in section 4.3. These people within a company
have concerns related to the code generator and will either use or develop the code
generator. Software developers shall use the generator but they shall also participate
in the development of the code generator templates as a mechanism to distribute their
knowledge among other software developers. But software developers will not be the only
ones developing the generator. So on the one hand stakeholders will perform different
tasks like using or developing certain architecture layers of the generator and on the other
hand one task regarding a particular architecture layer can be performed by different
stakeholders.
In this section generator roles will be introduced to map stakeholders to architecture

layers by the task of either using or developing this layer. Every role will develop modules
from at most one layer but may use components from multiple other layers. The usage
of modules from other layers corresponds to the relationship between these layers from
figure 5.1. The purpose of the roles is to ease the detailed explanation of the layers
in the next section regarding the generator related concerns of the stakeholders. The
categorization of stakeholders into roles based on their interaction with modules from a
layer is very coarse but it will help to better understand who is using a module. So these
roles map different stakeholders to an architecture layers by the two tasks of developing
and using generator modules. In total there are five different roles, which are the generator
framework developer, the architecture and technology developer, the generator developer,
the generator application developer and the generator user. The mapping is shown in

38

5.2. Generator Roles

5.3. Except for the generator core function developer and the generator user every role is
developing modules for one architecture layer and may use modules from layers below.

Figure 5.3.: Mapping of roles to generator architecture layers.

The first role is the generator framework developer, who has to develop the core code
generation functionality. Only the tooling developer will be acting as this role to develop
APIs for common code generation functions which can be used by modules from the
other three layers. The architecture and technology developer, the generator developer
and the generator application developer are possible users of the modules developed by
the generator framework developer.
The next role is the architecture and technology developer who shall provide an API

for naming strategies and codeline organization of architecture patterns. Additional APIs
for technologies which are affected by codeline organization and naming of generated
content has to be developed by this role too. The software architect will act as this role
to provide the architecture and technology related APIs. To achieve a common user
experience for different architecture patterns the tooling developer should support the
software architect.
The next role is the generator developer who will develop specific generator in the

generator layer. Software developer, software architects, operationals and tooling devel-
opers are stakeholders which are intended to be a generator developer. The development
of generators is intended to be done collaboratively and continuously over time by dif-
ferent stakeholders and not just by one. The tooling developer will support the other
stakeholders with knowledge about the use of the generator framework either directly
or via documentation. Software architects, developers and operationals will implement
generators which are useful to them. The development of a generator can be separated
into developing templates first and then writing the generator code itself.
The purpose of the generator application developer role is to provide a selection

of developed generator to a team of software developers, which are useful for them.

39

5. Code Generator Architecture and Concepts

Generators will be bundled in the application layer and not every generator will be useful
to every software developer st any time. Based on the architecture and technology, which
shall be used to develop a software system, the software architect has to decide which
generators shall be bundle into a generator application and mkae them available for the
generator user role.

The last role is called the generator user. Stakeholders in this role will use the generator
tool to generate content like source code based on their needs. In most cases the software
developer will be the stakeholders acting as a generator user. But for testing the generator
and its templates other stakeholders will be a generator user too.
Since responsibilities of each role are known the four layers can be explained in more

detail now.

5.3. Generator Framework Layer
A framework offers generic solutions to similar problems within a specific context [Zü05].
According to Fayad and Schmidt they are semi-complete and provide stable interfaces
and hook methods which allow applications to extend these interfaces. The generator
framework layer shall be a framework for code generation. It provide interfaces for
common functions which are necessary for the code generation but also an control flow of
the code generation process. Hook methods integrated in this control flow can be extend
by generators in the generator layer. The generator framework layer is the bottom layer
and will be developed by the tooling developer as the generator framework developer
role. It can be used by any layer above. First the generation life cycle will presented and
afterwards two APIs which are very useful in certain phases of the generation life cycle.

5.3.1. Generation Life cycle
The generation process can be separated into three steps and is shown in 5.4. The first
step is called the configuring phase. Within this phase the creation of the model necessary
for the generation shall be accomplished. Therefore arguments passed to the generator
are evaluated, the user is asked for missing information and finally the model for the
generation is build. In the second phase, which is called the writing phase, the templates
are processed and files are copied. In the last phase the generated files can be adapted
based on other generated files and projects. Initialisation and clean up is handled by the
generator framework. This phase is called the finalizing phase.

5.3.2. Composable Generators
To achieve reusability of generators for an incremental usage they have to be composable.
In particular a generator which can generate the whole domain layer of the PA pattern
should reuse generators which can only generate the API, SPI and implementation. Still
a composable generator should have the same life cycle like an atomic one. This means
that a composable generator has to execute in a certain phase all phase of the same type
of all its sub-generators before it can move on to the next phase. Otherwise a generator

40

5.3. Generator Framework Layer

Figure 5.4.: Three-phased Generation Workflow

could not know which other projects are generated and act accordingly if adaptation
would be necessary.

5.3.3. User Query API

To build the template model in the configuring phase it may be necessary that the
generator user has to provide information. Therefore the generator framework shall
provide an API, supporting the generator developer to ask the generator user for input.
In this context a query is a question for the generator user associated with a keyword to
retrieve the answer once the question is answered.

The Yeoman generator framework provides access to an such an API [Yeo]. Four types
of user queries which are also support by Yeoman seem in particular useful. The first
user query type will prompt the user to input arbitrary text related to a question. This
kind of query will be called input query. The second will prompt the user to confirm
a question with yes or no. This kind of query is called confirmation query. The third
query will prompt the user to choose one answer out of a list of many. It not only has
to provide a question but also a list with possible answers to the user. This user query
is called a select query. The last query will prompt the user to select multiple possible
answer out of many. This is very similar to the third user query and called a multi-select
query.
Often not only one question but a many needs to be answered by the user. So a

sequence of user queries has to be created by the generator developer. If an architecture
has multiple components and for each one of them an own generator shall be created

41

5. Code Generator Architecture and Concepts

than they may need common information related to the architecture pattern. Having
every generator to implement the same user query again increase the maintenance effort
of the generators and can lead to worse user experience for the generator user because the
same question is asked in different ways. Therefore a sequence of user queries has to be
shareable and composable. For example a generator developer may want to combine own,
custom user queries with a sequence of common user queries related to an architecture
pattern and provided the architecture API. This will also require that a user query may
not be executed right away but can be explicitly executed at a later time by the generator
developer.
In case another user query is handed over it may be possible that the questions have

already been answered. So when a user query is executed it has to be possible to hand
over answers, which can be mapped to questions by the keyword. So before a question is
asked, it has to be checked first, that it was not answered already. Otherwise it has to be
skipped.
Some questions may lead to further questions depending on the answer of the user.

Therefore for some sequences of questions it would be useful to build up a hierarchy of
questions. For example the user query to confirm a question can be used to ask different
questions based on the answer of the user, whether it is yes or no.
The concepts of an user query API presented above should result in an API which

eases the task for the generator developer of getting the necessary input from generator
user.

5.3.4. Intermediate File Storage
Processing template files and storing them on the disk is the main task of the writing
phase from the code generation life cycle. Often several files shall be generated together
which depend on each other and can not be used independently form the other files.
Therefore the concept of an intermediate file storage (IFS) is proposed. The file storage is
called intermediate because from a file process point of view it is storing and processing
the files only temporarily until they are provided to the user.

The IFS shall manage the retrieval of all files necessary for an execution of a generator.
Additionally it will be responsible for processing the templates files into the expected
output. Before a file can be written onto disk as expected several steps have to be
performed which are shown in figure 5.5. The template files need to be loaded from
the template location, transformed into the expected content and then placed onto disk.
During the process several things can go wrong and have to be handled appropriately by
the IFS. It shall be avoided that only some of the files are written onto disk due to an
error which happened during code generation. Therefore all necessary files have to be be
loaded and transformed first. It is up to the implementation if all files are loaded first and
then transformed or if every loaded file is transformed first before the next file is loaded.
The result has to be stored at a temporary location, which can be for example on disk or
in memory. Only after every required template file has been processed, all files shall be
written to the expected output. To execute the writing to the expected output the IFS
has to provide a function for the generator developer which shall be used if no files need

42

5.3. Generator Framework Layer

to be added any more. Optionally before writing the files in the finalizing phase they
could be transformed based on generated projects and architecture components. Because
everything was written in an IFS, it is easier to make changes in the finalizing phase.

Figure 5.5.: Overview of the necessary processing steps of template files to generate the
expected output and write it onto disk.

The way how the template files can be retrieved, how the template files are transformed
and how the generated content shall be provided may change. Therefore the IFS should
provide extension points and interfaces which allow a customization of these three steps.
For the processing of a template file three informations are necessary First it needs

to know how the templates can be loaded and where they are located. In template files
predefined place holders are replaced by content mapped to those place holders. So next
it needs to know how the templates shall be processed and which place holders shall be
replaced by which content. Finally it needs to know where the generated content shall
be stored. The location to retrieve or store files can be as simple as a directory on the
current file system, but it can also be a zip file or a place on another server.
It is also important for the IFS to provide an API for flexible selection of template

files and their target destination. This is a major issue with the Maven archetype which
does not allow to generate files at custom destination (??). A good API should support
several use cases for processing files for code generation. The API should support the
selection of either single files or of multiple files at once. Multiple files could be selected by
selecting a single directory and specifying which files shall be either included or excluded.
Additionally the API should provide the capability to either transform the template files
based on predefined place holders or to just copy them. To be able to write file the API
has to provide the possibility to specify the target location. If a just a single file was
selected for generation an shall be renamed a new file name has to be given. If multiple
files were selected and shall be renamed the user may want specify a regular expression

43

5. Code Generator Architecture and Concepts

which could be used to rename a complete file name or just parts of it.
When generated files are written from the IFS to their original place, conflicts with

existing files may occur. Especially if files are written into an existing development
environment this can happen. Because the incremental usage of the generator application
is a main requirement this is an important use case which has to be handled well. There
are two possibilities which have to be considered. If files are generated into a new
development environment, then a new directory shall be created and no conflicts can
happen. If file are generated into an existing development environment, it is expected
to be managed by a version control system (VCS), e.g. by Git Common VCS have the
possibility to show the difference between committed files and modifications applied
to them. So it is not necessary for the code generator to give this information in case
generated file would overwrite existing ones. But to give the user control over file conflicts
and increase the trust in the generator that nothing unpredicted may happen, conflicts
has to be shown to the user. The user shall decide if the existing or the generated file
shall be taken or even both by renaming the generated file.

5.3.5. Generation Domain Specific Language

Up until now separate APIs necessary for different task of code generation were presented.
Developing a common language for code generation will make it easier for different
stakeholder to talk about concerns of code generation. A domain specific language (DSL),
which is using these terms to wrap the different APIs and providing a consistent way to
access those APIs can ease the task of writing code generators. The DSL has to integrate
APIs from the generator framework but also from the architecture and technology layer.
Different generators will need different architecture pattern and technology APIs. So
it should be possible for the generator developer to extend the DSL based on required
architecture and technology during the development of a code generator. A DSL can
be extended statically or dynamically. It depends on the preferences of the generator
developers and the capabilities of the chosen programming language which way is more
favourable.

5.4. Architecture and Technology Layer

The second layer from bottom is the application and technology layer. An architecture
structures a software system components. If an architecture pattern shall be used for the
architecture of multiple software systems, it can make it easier for software developers
if a common naming strategy of the architecture components and a common codeline
organization exists. Additionally the naming strategy and codeline organization can be
extended to other projects like infrastructure projects, which are necessary to test and
run the software systems. So the development of those projects can become easier for
operationals too and be consistent in naming compared to the software projects. Using
a common naming strategy and codeline organization of those within the development
environment makes it easier for software developers and operationals to work with the

44

5.5. Generator Layer

generated code assuming that the naming strategy codeline and organization is already
known.
The purpose of the architecture and technology layer is to provide an API for the

generator developer which supports the development of generator according to naming
strategies and codeline organization conventions. The API for software architectures
needs a way to select the components of an architecture pattern or projects including
implementations of technologies which are necessary to run a software system. Based
on the selected component or technology necessary information like the project name,
the name space and the project location in the development environment have to be
provided. Based on the chosen component or project the amount of information, which
can be provided, may differ. It depends also on used technologies, especially build tools
which are strongly coupled to a development environment. The API for technologies
needs to provide functions to alter the generated content which is influenced by the
generation of architecture components and projects in the development environment. It
may happen that changes in the development environment may require the adaptation of
files in existing projects. This may be true especially for build related files and projects.
If a new project is added it has to be added into the build process. Therefore an API for
the build technology is necessary providing a function which allows to add new projects
in case one is generated. Otherwise the software developer has to do it manually.

5.5. Generator Layer

On top of the application and technology layer is the generator layer. Every generator
will be part of this layer. A generator is the piece of code implementing the generator
life cycle provided by the generator framework. The whole application is thereby a
composition of several generators. A single generator consists of template files and code
performing the generation process.

5.5.1. Separation of the Generator and the Templates

The code generator shall enable knowledge sharing through code generation. The
templates contain the implementation knowledge which shall be shared. So one of the
two core concepts of this layer is the separation of generator and templates. A generator
is coupled to the structure of the template files. But not every modification of a template
file may require adaptations of the generator code if the new version of the template
files can be picked automatically by the generator. So the generator and templates have
a different development life cycle. Templates shall be stored in an own project to ease
their development and to make them independently accessible from the generator code.
This means that both have their own version and a unique identifier. It is up to the
implementation if the same or different mechanism are used to release and access the
generator and the template files.
Additionally software developers shall be able to make own changes to the templates

and use them with the generator. So its not just one version of the template project which

45

5. Code Generator Architecture and Concepts

will be developed but each developer can have and use its own. In most cases software
developers should use a shared version of the template project, but to try out custom
modifications a copy of a certain version of the template project has to be provided to the
software developer either by an own identifier or a custom version of a template project.

5.5.2. Software Project as Template
Templates are very similar to normal source code. In most cases they contain predefined
place holders which can be used to insert custom content. These place holders have a
custom syntax resulting in the fact that the template can not be compiled any more.
To ease the development of the template project it shall be a normal software projects.
The information about the changeable parts shall in a template file shall be stored in a
separate file. Because templates are normal software projects now the can be treated the
same way. This includes the compilation of a template project but also IDE support for
its development. Additionally a template project can be managed by a VCS.
If a generator would directly reference the text strings in an template file both would

be strongly coupled. As a layer in between a mapping of text strings in a template file
shall be mapped to keywords. The generator shall reference only the keywords and not
the text strings directly. This mapping has to be stored in the template project itself in a
template description file at a location which is known by every generator by convention.
Optionally the description could contain a default questions which could be used by the
generator. Additionally the description could contain information about the scope of
the place holder so that template files can be included or excluded. It could be useful
to either specify just a file or directories or files. If a code generator implementation
support this concept the template developer can make more changes to the template
without breaking the template processing.

5.6. Generator Application Layer
The last layer is the generator application layer which contains the generator applications.
A generator application has two responsibilities First it has to bundle generators into one
generator application, which are useful to a group of software developers, and provide a
way to execute them. This selection of useful generators has to be done by the software
architect. The second responsibility is to the wrap multiple version of the selected
generators. If a generator is executed by the generator user without further information
then the newest generators and the newest templates shall be used. But the generator
user shall be able to specify a generator and also a template project The generator
application has to pick the right generator version. Since getting the template project
is the responsibility of the generator, the template version has to be passed to the the
generator, when it is executed by the generator application. Additionally every generator
application needs a way to pass arguments for user queries to the generators.

46

6. Realization

I don’t know
if it’s what you want,
but it’s what you get. :-)

Larry Wall

Contents
6.1. Implementation of the Generator Framework 47
6.2. Implementation of the Architecture and Technology Layer 49
6.3. Implementation of the Generator Layer 50
6.4. Implementation of the Generator Application Layer 50

In this chapter an implementation of the architecture and concepts for the code
generator from chapter 5 called Pagen is presented, which is necessary for their evaluation.
Pagen is intended for software development teams at the KISTERS AG who have to
implement software system following the PAP.

Three technologies used at KISTERS AG influenced the implementation. Java is used
as programming languages for PAP software system. Maven is the build tool used for all
projects. And Git is used as VCS for those projects with Gitlab as a web front end to
access and manage those repositories.

6.1. Implementation of the Generator Framework
The generator frameworks implements the generator life clycle, the IFS and the user
query API.

The generator life cycle is specified as a Java interface and implemented as an abstract
class for generator developers to reuse. The Java interface is shown in listing 6.1. Task is
another interface which allows the execution of generators by a generator application.
The InputMap is used to store the answer of user queries and to pass those between
generators. The TemplateProperties class is used to store the template model. Every
generator has its own TemplateProperties instance.
1 public interface Generator extends Task {
2
3 TemplateProperties configuring(InputMap initialInputMap);
4
5 void writing(Path destinationPath);
6
7 void finalizing();

47

6. Realization

8 }

Source Code 6.1: Generator.java

The detailed workflow including the user interactions is shown in figure 6.1. The
workflow is separated into actions done by the generator framework, a generator and a
generator user. The three hook method representing the three phases of the generation
life cycle give control from the generator framework to the specific generator. The
user only has to select a generator, provide necessary input and resolve file conflicts.
Composable generators have to execute the hook methods of its sub-generators manually
at the moment.
The user query API shall help generator developer to prompt the generator user for

information. An Java interface for the user prompts is specified and shown in listing 6.2.
Every prompt has a method to return its message or question, which will be displayed
to the generator user, a method to return the keyword, which will be used to store
the user input, and a method executing the prompt and returning the user value. Five
different implementations are provided including the four suggested ones from section 5.3.3.
Additionally a fake user prompt was added which can be used by the generator developer
to add arbitrary values into the resulting map is added. The Prompt Java interface
from listing 6.2 is not intended to be used directly by the generator developer Instead a
builder pattern is applied on top of this interface and its implementation [folwer2010].
For the user query API the builder pattern is used as Java class UserQueryBuilder. For
every prompt two method are added to the UserQueryBuilder. A static method for
starting a user query and a member method of the UserQueryBuilder, which can be used
to chain prompts. Additionally the builder class has a merge function taking another
UserQueryBuilder as a parameter. The merge function takes the prompts from the added
UserQueryBuilder and adds them to the current one. Finally the UserQueryBuilder has
two methods to execute the user queries. The first one takes no parameters and just
returns an new InputMap containing the user input. This is a key-value store of the
key of prompts and the value added by the generator user. The second execute method
from the UserQueryBuilder needs an InputMap as parameter. In both cases prompts
are skipped if their key already exists in the InputMap. Additionally there is helper
class which can be used to parse the input of the generator user given as argument when
executing the generator application. It has just one parse method taking an array of
string and returning an Input map.

1 public interface Prompt<T> {
2
3 String getName();
4
5 String getMessage();
6
7 T prompt();
8

48

6.2. Implementation of the Architecture and Technology Layer

9 }

Source Code 6.2: Prompt.java

The implementation of the IFS is based on the concept from section 5.3.4 and adapted
to the needs of a code generator for the PAP at KISTERS AG. The template projects will
be stored in Git. IFS provides a template loader to access Git repositories via Gitlab as
Zip files and stores them in a temporary directory on disk. Additionally it has two ways
two template files are processed. The first approach replaces strings in a template file
directly by using the content stored in the template model. Processed template files are
stored in memory. The original template files in the temporary directory are not altered
and can be reused with other template models. A second approach first transforms the
template files into Apache Velocity template files and uses its template engine to generate
the final content. One possible for Apache Velocity to access the template files is to store
them on disk [Apa]. At the moment the destination of a code generation can only be
the disk of the generator user execution the code generator. But it is possible to provide
other implementations. For selecting template files and processing them a fluent API is
provided for the generator, which allows to chose a destination and target folder and if
the template files shall be just copied or transformed [Fow10].

6.2. Implementation of the Architecture and Technology Layer

At the moment two APIs are provided, one for the PAP and one for creating AngularJS
components following a naming convention which is used for the web component of
the PAP. Because the naming strategy and codeline organization for AngularJS web
application is only used for PAP software system, both API are placed in a single project
at the moment. The implementation of the PAP API supports the generator user with
four different Java classes. First it provides an AbstractPortsAndAdaptersGenerator
which is an extension of the AbstractGenerator from the generator framework adapted to
the the PAP. The AbstractPortsAndAdaptersGenerator contains a user query sequence
with question, which has to be answered by any generator, who wants to generate PAP
components or related projects. Additionally the Gitlab name space and repository
name of the default PAP template project is already available. Next the generator
developer is supported by classes with factory methods for the components of the PAP
and infrastructure projects which can be used to build, test and deploy a software system.
Factory methods are a design to abstract the creation of objects [Gam+95]. These
factory methods return NamingConvention objects which is the third Java class providing
supported. It and contains the name and and the path of directories according to the
naming strategy and codeline organization convention. The last class supporting the
generator developer is a helper class which can convert a NamingConvention object
into a TemplateProperties object, which will be used to transform template files. The
helper class knows about the place holders in the Template Project which are important
to any project following PAP and makes use of the user input which is prompted by

49

6. Realization

the user query provided by the AbstractPortsAndAdaptersGenerator. It will use the
NamingConvention to map the user input to place holders.

6.3. Implementation of the Generator Layer

First of all generators for all the projects available via the PAP Maven archetype
were created. During evaluation of the generator framework and the PAP API other
components and projects were added. Figure 6.2 shows an overview of the available
PAP components in Pagen. It extends the functionalitly of the PAP Maven archtype by
provding another secondary adapter using the Java Persistence API is a standardized
API to access and store data from a SQL database [Bau+15].

Figure 6.3 shows the complete overview of the current PAP software system projects
with all dependencies. Except the Arc42 documentation and the acceptance test project
all of them are available. Especially system deployment projects was extended which
were not supported by PAP Maven archetype. An Omnibus Installer project were added,
which can be used to create windows installers, and a Chef recipe project, which can be
used to provision a software system necessary to run the application.

The KISTERS AG uses Git as version control system and Gitlab to access and manage
Git repositories via a web front end. Gitlab provides a very simple way to download
whole repositories as single zip files. therefore Git and Gitlab was chosen to store the
template project. At the moment it is one single repository containing all the template
files. Repositories in Gitlab can be accessed a name space and a repository name. It
possible to manage template releases by tags, to create new branches, and to fork whole
repositories. Especially the forking of the template repository is very convenient way for
software developers to modify an own version od the template project. In fact it is hoped
that this capabilities will increase the collaboration of developers for template projects.

6.4. Implementation of the Generator Application Layer

For the evaluation of the code generator architecture and concepts only one generator
application was developed. The generator application has to wrap the selected generators
and executed the selected version by the generator user. Instead of implementing an own
wrapper the generators will be executed as a Maven plug-in. The plug-in is called Pagen
as a short hand for ports and adapters generator. Maven can be expected to be installed
on all software developer computers. To execute the generator application Maven is
executed with the name of the plug-in as first argument. A released version of the plug-in
is bound to a fixed generator versions. So to select a particular generator version, the
matching plug-in version has to be selected. The generator application developer has to
decide, which generator are to be used with a new release of the plug-in. If the newest
released version of the generator plug-in shall be used, no version has to be specified
when the Pagen plug-in is called. If a specific version of the plug-in shall be used, it has
to added to the execution command of the plug-in. Maven will handle downloading the

50

6.4. Implementation of the Generator Application Layer

right generator version and its transitive dependencies including the generator framework.
So the whole task of managing the right generator version is handled by Maven.
If no further arguments are provided when the Pagen plug-in is executed, the user

query API is used to display a list of all generators. The generator user can select one of
those and the selected generator is executed. According to the concept of a generator
application it shall be possible to select a template version. Templates are stored in a
Git repository and can be accessed via a Gitlab server. The server URL, the name space
of the template repository, its name and a reference are possible arguments.

It is possible to select the generator not only interactively but to give the short name of
a generator as argument. The short names of generators are displayed in square brackets
in the list of generators if the plug-in is executed without specify a generator as argument.
Additionally it is possible to give the whole information which a generator would ask the
user by the user query API as arguments. Therefore it is possible to execute a generator
without the need of user interaction.

51

6. Realization

Figure 6.1.: Detailed Generation Workflow

52

6.4. Implementation of the Generator Application Layer

Figure 6.2.: The model of the software projects in Pagen.

53

6. Realization

Figure 6.3.: The model of the software system in Pagen.

54

7. Evaluation

It’s not a bug - it’s an
undocumented feature.

Author Unknown

Contents
7.1. Evaluation of the Implementation Regarding the Requirements 55
7.2. Architecture support . 56
7.3. Incremental Code Generation . 57
7.4. Ease of Use . 58
7.5. Knowledge Sharing . 59
7.6. Case Study at KISTERS AG . 60

7.6.1. Evaluation of the Generator Usage 61
7.6.2. Evaluation of Generator Framework Review 62

7.7. Discussion . 64
7.7.1. Code Generation for Viewpoints 64
7.7.2. Providing Architecture Convention instead of Restrictions 65
7.7.3. The Effect of Changes Between the Four Generator Layers 66
7.7.4. Knwoledge Sharing . 67
7.7.5. Classification of Generated Code for Software Reuse 67

7.8. Summary . 68

In this chapter the architecture and the concepts of the code generator are evaluated.
First the implementation of the code generator described in chapter 6 is evaluated against
the requirements from section 2.5. Afterwards as a part of the case study at KISTERS
AG qualitative surveys with stakeholders are presented which have reviewed, used and
extended the generator. Finally the benefits and limitations of the code generator are
discussed.

7.1. Evaluation of the Implementation Regarding the
Requirements

The requirements from section 2.5 are separated into four groups. Each requirement of
those categories are checked against the implementation. the same order of the categories
is chosen as in section 2.5.

55

7. Evaluation

7.2. Architecture support

Software architecture shall be supported by code generation of an exemplary application
implementing the architecture. This requires the architecture to be a pattern which can
be reused for multiple software system.
For the PAP and the architecture of an AngularJS web application the code gener-

ator implementation provides support for naming strategies and codeline organization.
Additionally new ones can be added at any time. So requirement A.1 is implemented.

Code is generated for three different viewpoints, which are related to different stake-
holders and different concerns. So the generated code serves different purpose like
implementing functionality or automating the provisioning of servers. Furthermore, there
are no limitations for any technology and templates can use any programming language
or tool. Within the templates the four different programming languages Java, Groovy,
JavaScript, and Ruby are used and three different build tools. This makes the code
generation very heterogeneous and fulfils requirement K.2 and K.3.

Developing a new generator is very easy due to the provided generator framework APIs,
the generation life cycle and the architecture support. New code generators can be used
to implement new architecture component or new technologies, which fulfils requirement
A.4 and A.6. Requirement A.5 requests a simple way to extend the generator by new
architecture patterns. The implemented architecture can be used as guidance. They
illustrate, which classes have to be implemented for a good support of an architecture
pattern. This should be sufficient for now but maybe improved later on when more
architecture patterns are added and a better understanding for this kind of support can
be derived.
Maven will automatically download the specified version of the Pagen Maven plug-in.

It is even not necessary to install it in the first place because it is all handled by Maven.
Only Maven has to be available on the computer. So requirement A.7 is implemented by
Maven. If no version is specific the newest one will be picked. However it is not possible
to pick a generator version freely, just the ones provided as Maven plug-in. Still this
should be sufficient to fulfil requirement A.8. Being able to specify any generator requires
that the generator versions are well documented. Otherwise no well-informed choice of
a generator version would be possible. Also picking the generator version, which work
well together, for an incremental usage may become very hard. Having a selection of
generator bundled into a Maven plug-in will increase the reliability of the code generation.
Documentation is still necessary but should be easier because it is less distributed.
The AbstractGenerator class provides a code generation life cycle with clear respon-

sibilities of the life cycle phases implementing requirement A.10 The AbstractPortsAn-
dAdaptersGenerator also provided convention for PAP specific user query. So conventions
for code generation, which are requested by requirement A.9, are implemented by the
generator framework and the architecture and technology layer.
The IFS implements requirement a.11 and is therefore very flexible regarding the

location of the generated content, which can be determined dynamically during execution
of the code generator. Additionally the IFS can be extended to not only write onto disk

56

7.3. Incremental Code Generation

but also create Zip files with the generated content.
The requirements A.12, A.13, A.14 and A.15 are about PAP support. All of them are

implemented by the code generator. It is possible to generate exact the same code as
provided by the Maven archetype and even more. Every PAP component can be selected
solely for code generation. This is implemented by breaking the generator into multiple
small ones and providing the possibility to compose generators for e.g. generating the
whole application. Additionally the generation of subslices is possible resulting in full
support of the PAP naming strategy and codeline organization. A new secondary adapter
using the Java Persistence API, a project which can be used to develop Chef recipes and
an Omnibus project which can be used to create installers were added to the generator.
But there are still some other suggestion, which were not implemented yet and are
future work. But the three new projects were the most important ones at the time of
development.

7.3. Incremental Code Generation

Tools also need to be able to integrate in to work process of the users without enforcing
unwanted changes of this process. By making the code generator incrementally usable the
generator can be used at any time. To achieve this six requirements regarding incremental
code generation were collected and are shown in table 2.2.
The code generator can be used to generate the PA components either into new

projects or into existing projects. Additionally new infrastructure projects provided
by the code generator can be generated at any time into an existing development
environment. Therefore requirement I.1 and I.2 are fulfilled, but the implementation has
some limitations. If a new project is generated then the Maven build file expects another
project called parent containing common configuration and dependencies for the build
process at the same directory level. Additionally any new project has to be added to a
super seeding Maven build file and the build pipeline manually. If a new PA component
is generated which implements a provided service or provides one, it has to be added
manually to the OSGi configuration file, which is used for modularization at KISTERS
AG. So at the moment manual work is still necessary which can be improved in future
versions of the code generator.

The generator user can decide if the exemplary code shall be generated or not. If the
user decides not to only the project following the PAP naming strategy is generated.
So the code generator also fulfils requirement I.3. If the generator user decides to not
generate a project and no exemplary code nothing at all is generated.
The generator user can either generate single PAP components, a whole slice or

something in between with a single execution of the code generator. However, the
generator user can not freely choose the needed PAP components and projects and
let the code generator generate them with a single execution. To achieve this several
executions of the code generator are necessary. Executing the code generator in batch
mode can reduce the necessity to add the same content for every execution but still a
single generators have to be selected each time. Therefore the code generator does not

57

7. Evaluation

fulfil the requirement I.4.
To make it easier for the generator developer to provide generators generating more than

on project or PAP component, generators are composable as requested by requirement
I.5. So to generate a whole slice atomic generators for each of the infrastructure project
and the PAP component project are reused. This really makes it easier to maintain
generators by reducing the necessity of duplicated code.
The last requirement was about additional support for refactoring PAP components.

This exceeds the capabilities of a pure code generator but makes sense as part of archi-
tecture support. Software system architecture should be supported by code generation
but this support was not limited to code generation. However, the code generator does
not implement this requirement. Before this is possible the code generator needs a
way to detect PAP components in the current development environment. The PAP
naming strategy for projects is not followed completely by a few development environment
of existing software system. There was not enough time to get an detailed overview
of existing software systems about the naming strategy compliance. Also the naming
strategy does not make statements about the fact how projects shall be named if they
contain more than one PAP component. Additionally there were not enough information
yet if such a feature would be useful to a broad base of software developers because
the way how PAP slices are developed is currently changing. Instead of starting with
a PAP slice, which has a single project for each PAP component, another development
process starts by adding all PAP components into single project and only splits them
into multiple projects if they become to big. This shall reduce the overhead of too many
software projects. But the code generator reduces the amount of overhead resulting from
the creation of new projects. Therefore this feature was postponed as future work. So it
has to be decided in the future if the overhead of multiple projects is still too much and
the functionality to split projects would be useful.

7.4. Ease of Use

Ease of use is important for code generators, which shall be used for governance and to
transfer knowledge [New15]. This was the purpose of the requirements from the category
ease of use presented in table 2.3.
The generator user can execute the code generator, which provides a command-line

interface, from the console. The whole user interface is textual. User input can either
happen interactively or as arguments. Even a combination of both is possible. Everything
which is not passed as arguments has to be answered interactively. This provides the
most flexibility and it makes it easy to try out different generators with the same input.
So requirement U.1, U.2 and U.3 are implemented by the code generator.
Requirement U.4 requested IDE integration via an IDE plugin. Eclipse and IntelliJ

Idea are IDEs which are used by software developers at KISTERS AG. Maven is installed
on all developer computers and therefore the code generator is available without needing
to install it. The effort to get familiar with the plug-in development of two IDEs,
then actually developing the plug-ins and maintaining them seemed not worth the

58

7.5. Knowledge Sharing

benefit. Additionally automatic updates of the generators were not possible requested as
requirement A.7. Therefore it would be necessary to implement an own wrapper, which
came for free via Maven for the CLI version of the code generator. So requirement U.4
was postponed for now.

Requirement U.5, which is automatic file conflict detection and the possibility to resolve
them by the generator user, is implemented by the IFS. This works sufficient but each
file conflict has to be resolved by it own. If the generator use could decode once for all
file, how file conflicts shall be resolved, it would be a useful extension of the requirement.

Requirement U.6 requests automatic detection of new generators and requirement U.7
request an overview of all generators in a repository. For now both requirements are not
implemented. A generator application is a selection of useful generators for a particular
architecture. So instead of implementing U.6 and U.7 a different path was chosen, which
gives the software architect more control over the available generators which are useful
to the software development team. If this is the better approach has to be evaluated
over a longer period of time in the future. Therefore at the moment there is no need for
requirement U.6, but this can change in the future.
The last requirement from this category U.8 requested Git integration. Around the

same time of the requirement interviews an own Maven plug-in was released by a software
developer at KISTERS AG for just this purpose. therefore there was no need any more
to integrate Git into the code generator.

7.5. Knowledge Sharing

Software developers shall be able to reuse there code as templates to achieve knowledge
sharing of implementation best practices. Requirements for this cause were presented in
table 2.4.
The template project contains a full exemplary application. Only the new infrastruc-

ture Chef project and Omnibus installer project are at the moment mainly generating
boilerplate code. The code necessary to create an Chef recipe and an installer for the
exemplary application code is still missing and has to be done in future. But for the
most part requirement K.1 is fulfilled.
The code of software developers can be directly used as templates without any modi-

fication, so requirement K.2 and K.3 are both is implemented too. Text strings in the
code which shall be replaced by generator user content have to be defined in a template
description file, which was described in section 5.5.2.
Templates are regular source code and they are stored in a Git repository separately

from the generator code. Therefore requirement K.4 is fulfilled. The whole generator
application including the implementation of generators, which are using the templates,
are provided as Maven plug-in. Another way could have been to store the particular
generator next to the templates, for example as Groovy scripts. This would make it harder
to provide a custom selection of useful generators and ensure the quality of generators.
An the other hand this approach would ease the development of new generators. So both
ways have their good points. It could be future work to provide a new Groovy DSL for

59

7. Evaluation

code generation and an implementation which can execute scripts for generator stored in
template projects.
At the moment there is only one template repository and so requirement K.5 is not

implemented yet. But splitting up the repository into smaller ones would make it
necessary to solve some issues with the current code generator first, which would rise
up. When the generator is executed the coordinates of a template project, which are
the Git name space, the repository name and a reference to a commit, can be passed as
arguments. But only one set of those coordinates can be passed as arguments, which is
then used for all template repositories. But generators are composable and can make use
of other generators. If a composed generator is executed, whose sub-generators have their
templates stored in different repositories, there is now way at the moment to pass other
template repository coordinates at the moment without breaking the code generation.
Software developers could not easily modify the template code any more and use it for
generation. As a result the quality of template project regarding best practices is assumed
to drop. But hopefully this issue will be fixed in the future an template repositories can
be kept smaller and perhaps even reused for more than one generator application.
Requirement K.7 requests that templates can be build, tested and released. For code

generation only the source code of templates is necessary. The template project is
managed by the VCS tool Git, which persists the state of a template project as commits.
It is possible to put references on commits. Therefore being able to put a version as
reference to a commit is sufficient as release and fulfills requirement K.6. Of course the
templates can be build because they are a exemplary application. But except from the
test which are part of the exemplary application there is no further support for testing
the generator. Being able to tests part of the generation process itself and not just the
generated content could be useful but is still part of future work. Therefore K.7 is not
considered to be implemented because testing is an important of software development.

Software developer can fork template repository and use this one instead. A the forked
repository will be added to the name space of the software developer and can be referenced
by the three coordinates mentioned above. So requirement K.8 is implemented.

At the moment the master reference is used as a default value to get automatic template
updates. So requirement K.9 is implemented. However references on other commits still
have to be placed or older versions of the template project would not be usable. A better
approach would be to use references which refer to a generator version. The generator
version could be appended by a template project version. An automatic mechanism could
easily pick the highest template version for the particular generator version. If a the
template project has to be developed for multiple generator version in parallel because
of some breaking changes, Git branches would become necessary. Branches can also be
accessed by a reference.

7.6. Case Study at KISTERS AG

In this section the evaluation of the Pagen code generator by employees of the KITERS
AG are presented. For the evaluation at KISTERS AG a evaluation sheet was created B.

60

7.6. Case Study at KISTERS AG

Evaluation result of a software developer

Question Rating

1.1.a 5
1.1.b -
1.2.a 4
1.2.b Default input values and remembering of former input
1.3.a 4
1.3.b Order of generators and adaptation of POM files

Table 7.1.: Overview of the rating for the code generator usage by the software developer.

The questions in the sheet were separated into question regarding the usage of Pagen and
regarding its extension. For every topic a rating of implemented features was requested
and one question for further comments. Allowed grade for the rating should be between
1 and 5, while 1 meaning a bad implementation and 5 a good one.

7.6.1. Evaluation of the Generator Usage
To evaluate the usage of the code generator a software developer was asked to use the
generator and to answer some questions afterwards. First the software developer used
Pagen to generated a whole slice first. Afterwards for a new project Pagen was used
several times to generate single PAP components. Finally the software developer had to
answer question from the the evaluation sheet B regarding the generator. The answer
are presented in table 7.2. Pagen got the best rating regarding the ease of installing the
generator and good ones for its general and incremental usage. Regarding the general
usage, default values and the possibility of the generator to remember former values,
were two new requirements, which were requested. Regarding incremental usage a better
order and categorisation of available generators were requested and tooling support for
Maven. In particular the adaptation of the Maven POM file based on generated content
and the existing development environment.

Evaluation of Adding an Infrastructure Generator

To evaluate the development of new generators a operational was asked implement a
new generator for a infrastructure project and to answer some questions afterwards. The
implementation was done together with the developer of Pagen. The operational had
already created a project, which could be used as template project. First these files were
added to the template Git repository. Then the content which shall be replaced in the
template files was determined and added to the template description file. Afterwards in the
project containing all the generators a new generator Java class was created extending the
AbstractPortsAndAdaptersGenerator class. A new user query was created for additional
and merged with the one provided by its abstract super class. The PAP API was used

61

7. Evaluation

Evaluation result of an operational

Question Rating

1.1.a 4
1.1.b IDE plug-ins for the generator
1.2.a 4
1.2.b Graphical UI
1.3.a -
1.3.b -
2.1.a 5
2.1.b 4
2.1.c 5
2.1.d Recognition of unintended replacement

Table 7.2.: Overview of the rating for the code generator usage by the software developer.

to create a new model and transform the InputMap into TemplateProperties. Then the
files, which shall be transformed or copied were selected in the writing method. This was
more complex than in the other generators, but the operational was not restricted by
the IFS. Finally the new generator was released with a SNAPSHOT version of Pagen to
test the new Omnibus project. In a first test it was discovered that more content was
replaced than expected because the same text string was also used in other template
files. The template project had to be adapted by changing the content and adapting the
template description. No new release of the Pagen was necessary. Then the operational
was asked to answer the evaluation sheet B. The answer are presented in ??. Regarding
the usage of the generator an IDE plug-in and a graphical UI was requested. Since the
incremental usage was not tested, the questions could not be answered. The creation was
new generators was evaluated very good. Only a way to recognize unintended replacement
of content in template files was requested.

7.6.2. Evaluation of Generator Framework Review

To evaluate the generator framework and the implementation of the architecture and
technology layer two reviews were performed with employees at KISTERS AG which
are software architects and tooling developers at the same time. They were the only one
which had to answer the full evaluation sheet. The review was done together with the
Pagen developer. The result is shown in 7.3. The ratings for generator usage nd generator
development were similar to the other evaluations. Again a UI and other possibilities to
execute Pagen besides Maven were requested. Also default values and the remembering
of former input was requested. Then the distribution of template projects into smaller
ones, which is in fact requirement K.5, was requested. A completely new request was the
one for more documentation of the code generator framework.

62

7.6. Case Study at KISTERS AG

Evaluation result of an software architect and tooling developer

Question Rating 1 Rating 2

1.1.a 5 5
1.1.b - Not only Maven
1.2.a 5 5
1.2.b Default values UI
1.3.a - 4
1.3.b - Remembering of former input
2.1.a 4 4
2.1.b 5 5
2.1.c 4 5
2.1.d Testing and smaller templates projects
2.2.a - 5
2.2.b - 5
2.2.c 5 5
2.2.d 5 5
2.2.e 4 5
2.2.f 5 5
2.2.f Complex writing phase More documentation

Table 7.3.: Overview of the rating for the code generator usage by the software developer.

63

7. Evaluation

7.7. Discussion
In this section several issues and possibilities for improvement of the code generators are
discussed. First the capabilities of the architectural viewpoint regarding code generation
are discussed. Then the architecture and technologies layer is discussed and subsequently
the impact of changes in the different layers on the other layers. Afterwards the impact
of changes in the exemplary application is discussed. Finally benefits and problems of
reuse are argued for the code generator.

7.7.1. Code Generation for Viewpoints

The three viewpoints functional, development and deployment have different concerns
and stakeholders. Thereby the generated content by a code generator differs for each of
these viewpoints. In this section the code generation for the three viewpoints is discussed
and its benefit for the generator user.

The functional view is the functional structure based on the requirements of a software
system. Requirements are different for each software system. So its is not possible
to generated code fitting the functional view of a software system. But it is possible
to generate boilerplate code which is necessary for the functional implementation but
independent from it. Additionally for the purpose of knowledge sharing it is possible
to generate exemplary source code of an hypothetical software system. The purpose
of the generated exemplary code is not the functionality itself but the way how it is
implemented. It contains best practices and governance as code [New15]. This exemplary
code is only useful for software developers, which are new to technology used by the
generated code or does not know the governance rules, which their implemented code
has be in compliance with. Experienced software developers probably don’t want to
generate this code every time. If best practices or governance changes there might be
the possibility that experienced software developers which don’t generate and examine
the exemplary code miss the changes. So code generation like it is implemented here
can only be a way to experience best practices and governance and is not sufficient to
inform software developers about changes. Code generation for functional view might be
a way to let software developers see and examine best practices but there are still other
mechanism necessary to inform them about those.
The development view is a model of the development environment containing the

projects where source code files are generated into. This can be the implementation of
the functional view or of the deployment view. Based on the software project model from
section 4.2 this can be for example projects containing the exemplary code, projects to
test the software system or projects, which implement the models of the deployment view.
Depending on the structure of the views and the used technology the number of projects
will differ for each system. Additionally software developers, testers and operationals
may have different projects just for their own purpose. So based on the development
view different projects have to be generated. These generated projects will organize the
source code files in compliance to the convention of the codeline model and may contain
a build script for automated build, testing and release using the generated source code

64

7.7. Discussion

file structure. In contrast to the functional and deployment view the development view
is not directly influenced by the requirements of a software system but by the way how
the functional and deployment view are structured. Therefore for a similar functional
and deployment view and modularization of source code files the generated projects can
be used for the development of a software system itself and are not exemplary projects.
This makes the generation of projects useful for beginning and experienced software
developers, tester and operationals. There maybe also projects which are intended for
the development view itself like a project containing an automated build pipeline or
projects managing the dependencies or build tools and plug-ins. These projects may be
mandatory for the development environment and for some functional and deployment
projects.
The deployment view of a software system contains the hardware nodes and network

where the functional elements are deployed at. Software systems will have different
requirements regarding the hardware and the network. So regarding code generation this
will be similar to the functional view. It is possible to generate boilerplate and exemplary
IaC files for projects intended for deployment. The generated deployment code can either
use virtual machines on the developer machine or corporate systems provided for this
purpose like a database management system (DBMS). Here the same as for the functional
viewpoint applies.

So the code generator presented by this thesis is very good at generating the development
environment because it is not influenced by the requirements of a software system.
Generating boilerplate code for the functional and deployment viewpoint is fine too, but
the exemplary application for sharing knowledge and governance will not be generated
by experienced software developer or operationals unless they see a reason. Informing
them about important changes of best practices and governance by using other channels
for communication can be a reason to take a look at the exemplary application again.

7.7.2. Providing Architecture Convention instead of Restrictions
The four layers of the code generator architecture define responsibilities for its modules
and allowed dependencies. The separation does increase the development work only
imperceptibly, but the benefit from the separated concerns and the possibility to reuse
the generator for completely different software system is really great. The generation
life cycle enabling composable generators and the APIs make a big difference for easing
the generator development. But especially putting architecture and technology APIs
in an own layer makes the generator framework more universally applicable without
being cluttered by unused architecture patterns and technologies. Software architects,
software developers and operationals, which are familiar with the used technologies, and
the tooling developers responsible for the generator framework have to work together
to improve the APIs in this layer. For a good separation of concern every API of an
architecture pattern or technology should be usable independently of the of other APIs in
this layer. So this layer will have many but small modules which will be easier to develop
and maintain these modules. The approach of supporting the generator developer if the
provided conventions are used seems to be the better one then implementing restrictions

65

7. Evaluation

to prevent the generation of code violating those. This makes it much easier for generator
developers to develop code generators if they stick to the provided convention. Restriction
limit the functionality. These limitations may effect other areas than were the restriction
shall be implemented or there may be reasons for exceptions. Software developers will
have to work around the limitations making the development harder. In most cases
instead prohibiting one way a preferred one can be made more attractive. Therefore
APIs are making the development easier if developers stick to the preferred way. The
possibility that violations may occur is higher with this approach and may even not be
done purposely every time. Still there may be sometimes a reason for those and having
to implement a work around can be frustrating. This shall be prevented.

7.7.3. The Effect of Changes Between the Four Generator Layers
The architecture in section 5.1 separates the modules of a code generator into four
different layers. If a module changes, than modules from the same or higher layers have
to be adapted if they shall make use of the changes. In this section the effect of changes
in the modules from different layers shall be discussed and their influence on other layers.

At the bottom is the generator framework. It has the biggest impact on other modules
but itself has no dependencies to any other generator architecture layer. Bug fixes and
new features easing the generator development and usage are reasons for changes of the
generator framework. If changes in the generator framework are backwards compatible
adapting other layers should be easy. Generators may be mostly affected and there
may be many generators which have to be adapted. If generators are placed in different
modules the necessity to change a generator is only given when it is affected by a bug or
want to use a new feature.

On top of the generator framework are the architecture and technology related APIs
providing help for the generator developer creating generators which generate code in
compliance to the architecture pattern. Every architecture pattern or technology should
be in an own module. A change in such a component will affect every generator using
this architecture pattern or technology. There may be two kind of changes which have to
be handled differently. The first one is the extension of this layer by new components.
Since no existing code is modified no generator has to be changed. The second one is
the change of architecture conventions. This may require the adaptation of generators
using this architecture API and should be avoided because there are projects which
may still use the old conventions. Using the new version of the generator may result in
generated code which is not compatible with the existing development environment. So
two generator version have to be maintained using the different architecture API version
until the existing projects using the old conventions are adopted.
On the next level are the generators which are likely to depend on an architecture

pattern API. Since all generators belonging to one architecture pattern should depend
on the same architecture component, every time such an component is updated it will
trigger a new generator development increment. Templates are not inevitably affected by
changes but it may be useful to adapt them to new conventions because they represent
best practices and governance.

66

7.7. Discussion

The generator application containing the UI depends on the generators. So it may
only need to change if new generators are added or existing ones modified. Before a
new generator application is release the quality of the available generators needs to be
assured.
So a generator relies on a codeline structure of template. Because of the template

description file is doe snot have to rely on template content any more. The separation of
generator and template into tw projects can result in the wrong conclusion that they
are not coupled any more. Additionally changes at existing code in the architecture and
technology layer is problematical. Sticking to the the Open-Closed Principle, which states
that classes should not be modified but only extend, can prevent that many generators
has to be adapted [Mar03].

7.7.4. Knwoledge Sharing

The capabilities for knowledge sharing seem promising. The forking ability of Gitlab makes
it realy easy for software developers and operationals to try out their own modifications.
An unresolved issue is the propagation of changes in the exemplary application for the
generator stakeholders. These changes are not so severe like the ones discussed above for
the development view. The stakeholders have to be informed about those on a different
communication channel because it can not be expected that an experienced developer or
operational is still generating the exemplary application. A wiki can be used to persist
these informations but it will not inform the stakeholders only about important changes.
So there may be better ways suited for everyone to inform about code generator changes.
A company internal developer newsletter, which is published every few weeks or months
depending on the amount of changes and the severity could be more appropriate.

7.7.5. Classification of Generated Code for Software Reuse

Sommerville defines benefits and problems which can arise for software reuse [Som10].
Some of those can also be applied to the code generator and generated code.

Especially three problems can also affect the code generator. Creating and maintaining
reusable software can be expensive. This is also true for the code generator. It has to
be developed and maintained like any other application. Only if the generator is used
by many software developers and operationals the overall development costs may be
lower. Providing many and useful generator can increase the number of users. Another
problem is the not-invented-here syndrome. The code generator was explicitly designed
in a way so that every stakeholder can participate in its development, especially the
template development. If software developers think that they can write better templates
they are hopefully improving the existing ones and sharing their improvements with
others. The last problem applicable to the code generator is the finding the software
components which are worthwhile to be provided as generators. By reducing the costs to
create new generators and to prepare code for being usable as templates hopefully there
are many software components which can be transformed into a generator and pay off its
development and maintenance.

67

7. Evaluation

But there also benefits resulting from the code generator. First the code generator
can make effective use of specialist if they provide their knowledge as generators via an
exemplary application adapted to the architecture pattern at use. Then the code generator
can accelerate the development. Especially recurring task like creating development
environment and boilerplate code of certain projects can be done by the code generator.
This are tasks which don’t add value to a software project because they implement no
direct software system requirement. But still they take time. Standards compliance is
another benefit of a code generator, if they can be represented as code. Only using the
code generator for this purpose is not enough as already discussed in section 7.7.1, but it
is a good way to experience these standards hands-on.

7.8. Summary
A comparison of the implementation and the requested requirements showed that most
of them were implemented. A evaluation of the code generator with software developers,
operationals, software architects and tooling developers was favourable for the code
generator. Knowledge sharing, implementation governance, architecture support can be
provide as generated code. But there are limitations which have to be kept in mind. A
good mix of different techniques to achieve those goals can overcome those limitations.
Still the possibility that software developers can experience those directly as code on
their own computer will improve their adaptation and distribution in a company.

68

8. Conclusion

If debugging is the process of
removing bugs, then
programming must be the process
of putting them in.

Edsger Dijkstra

Contents
8.1. Summary . 69
8.2. Future Work . 70

In this chapter the main requirements, concepts and findings from the evaluation are
summarized first. Then future work will be represented. This are either requirements,
which could not be implemented and evaluated yet, or needs of further evaluation
and analisation of the generator usage and the development of new concepts for its
improvement.

8.1. Summary

The main issues which resulted in the development of a code generator were the support
of creating incrementally a development environment in accordance to an architecture
pattern and optional an exemplary application to share best implementation practices
and governance. The main stakeholders are the software developer and the operational.
To develop a generator, which will be accepted by its stakeholders, ease of use was another
big issue. So architecture support, incremental usage, ease of use and knowledge sharing
were the four categories of the requirements. In c3 an evaluation of existing generator
frameworks came to the conclusion that none of the generator frameworks could be used for
the implementation of the code generator, because it would not be possible to implement
important requirements. An evaluation of the existing generators gave an overview
of the capabilities of code generators. All of those code generators mainly addressed
software developers and not operationals. All code generators could be extended so a
more heterogeneous could be achieved. But all lacked required capabilities of to enable
an easy knowledge sharing. In chapter 4 a more theoretical look on software development
environments from a software architect point of view was described. A software project
model was introduced to better understand the entities in the development environment,
which were defined as projects. Chapter 5 introduced an four layered architecture for a
code generator. The most important concepts introduced in this chapter are:

69

8. Conclusion

• A architecture independent generator framework

• A generator life cycle

• An API handling the processing of template files

• An own layer for architecture and technology related implementations

• Separation of generator and templates

• Using normal software projects as templates

Chapter 6 introduced a code generator implementation of the formerly presented ar-
chitecture and concepts. In chapter 7 the implementation was evaluated against the
requirements and an evaluation of different stakeholders was presented. The most require-
ments could be implemented. Only the two important requirements, I.4 and I.2, were
not or not sufficiently implemented. Both were also requested by the evaluation with
stakeholders by one of them. Additionally a few new requirements came up. Afterwards
a broader discussion about the code generator finalized the chapter. Incremental usage
supports the required flexibility for the generator usage. The code generator makes it
much easier to create development environments, but there are still many ways to improve
this. The capabilities for knowledge sharing are implemented and seem promising, but a
way needs to be established to inform stakeholders about changes.

8.2. Future Work
The code generator can be improved in many ways and the most important ones shall be
listed here. First of all good documentation for every stakeholder using or developing
the generator is required. The documentation should be as easily accessible as the code
generator itself. In the generator framework an event-driven concept for propagating the
generated projects and existing ones in the development environment would be useful.
This could be leveraged by a Maven API in the architecture and technology layer to
modify the Maven build files accordingly. If it works well it would reduce the amount
of manual adaptation of generated code. The requirement I.4, which requests that it is
possible to configure a development environment more flexible could make use of the
event-driven project propagation approach.
Then there are a few concepts for the generator layer, which may be useful. First a

domain specific language for generator development. A short time during the generator
development a DSL for generation was available It made the generator much easier at
the time but became unnecessary when software projects could be used as templates. A
new DSL could decrease the template processing complexity which was discovered during
the implementation of the Omnibus generator Additionally a way to store scripts in the
template project and being able to execute them during generation could make the But
this feature may require additional security features. And finally distributed template
projects would be useful because the template project became quite big and some of the
templates are also useful for other team not using the PAP.

70

8.2. Future Work

Then a new evaluation of the code generator usage and how the acceptance could be
improved using the technology acceptance model (TAM) could be performed. A generator
which is accepted and used by many user is much more valuable. Other ways of accessing
the generator should be evaluated, like a IDE plug-in or web UI for requirement I.4.
All the code generation was limited to development, the functional and the deploy-

ment viewpoint. Maybe the code generator can also support other viewpoints like the
information layer. So an analysis of the other viewpoints regarding their capabilities for
code generation would be interesting too.

71

A. Requirements Questionnaire

 Interview-Fragen Seite 2

Figure A.1.: Requirements Questionnaire page 1 of 4

73

A. Requirements Questionnaire

 Interview-Fragen Seite 3

Figure A.2.: Requirements Questionnaire page 2 of 4

74

 Interview-Fragen Seite 4

Figure A.3.: Requirements Questionnaire page 3 of 4

75

A. Requirements Questionnaire

 Interview-Fragen Seite 5

Figure A.4.: Requirements Questionnaire page 4 of 4

76

B. Evaluation Sheet

Evaluationsbogen

Skala:

5 Sehr gut

4 Gut

3 Befriedigend

2 Ausreichend

1 Nicht nutzbar

1. Generator Nutzung

1.1. Installation und Updates des Generators
Ziel: Der Generator soll eine einfache Installation und Update-Möglichkeit bieten bei ausreichender

Flexibilität der Versionsauswahl, um eine möglichste geringe Hürde zur erstmaligen Nutzung zu

bieten und um langfristig für ein Projekt nutzbar zu bleiben:

• Durch das Ausführen des Generators als Maven Plugin …

o entfällt die Installation

o wird ohne Angabe einer Version automatisch die neuste des Generators genutzt

o ist die Version des Generators wählbar

• Durch die Auslagerung der Templates in ein Git Repository …

o kann die neuste Version der Template automatisch genutzt werden ohne das der

Generator aktualisiert werden muss (durch Benutzung eines Release Branch (z.B.

master) des Template Repository)

o kann über Git Referenzen ein konkreter Template Respository Stand ausgewählt

werden

Wie bewertest du den Generator hinsichtlich dieses Ziels auf einer Skala von 1 bis 5?

Was könnte verbessert werden?

1.2. Ausführung des Generators
Ziel: Der Generator soll einfach ohne Vorwissen über die speziellen Generatoren nutzbar sein und

sich auch im Batchmode ausführen lassen, um eine möglichste geringe Hürde zur erstmaligen

Nutzung zu bieten ohne dabei fortgeschrittene Nutzer zu stören:

• Eine interaktive Benutzerabfrage vereinfacht die Konfiguration eines Generators

• Argumente zur Ausführung eines Generators können ganz oder teilweise übergeben werden

Wie bewertest du den Generator hinsichtlich dieses Ziels auf einer Skala von 1 bis 5?

Figure B.1.: Evaluation Sheet page 1 of 4

77

B. Evaluation Sheet

Was könnte verbessert werden?

1.3. Inkrementelle Generator Nutzung
Ziel: Der Generator soll sich inkrementell nutzen lassen, damit er auch nach der initialen Generierung

für ein Projekt benutzt werden kann:

• Initial kann entweder ein komplettes Projekt oder auch nur einzelne Komponenten generiert

werden

• Zu jedem Zeitpunkt können neue Komponenten in bestehende Projekte oder als

eigenständige Projekte hinzugefügt werden

Wie bewertest du den Generator hinsichtlich dieses Ziels auf einer Skala von 1 bis 5?

Was könnte verbessert werden?

2. Generator Entwicklung und Erweiterung

2.1. Erstellung und Wartung von Templates
Ziel: Das Hinzufügen neuer Templates und die Pflege und Verbesserung bestehender Templates soll

so einfach wie möglich sein, um einerseits durch die Templates einen großen Wissensaustausch

zwischen Entwicklern von Best Practices zu erreichen und um andererseits durch die Templates

Konventionen und Code Governance in Software Projekte zu integrieren:

• Generatoren und Templates sind für eine vereinfachte Wartung voneinander getrennt

• Templates sind ein normales Software Projekt, dass sich kompilieren und testen lässt

• Template Projekte liegen in Gitlab und können über Referenzen (Branches, Tags) versioniert

werden

• Durch die Möglichkeit Git Repositories zu forken und bei der Generatornutzung die

standardmäßigen Git Koordinaten zu überschreiben, können Änderungen an den Templates

sehr schnell getestet werden

Wie bewertest die Template Entwicklung hinsichtlich dieses Ziels auf einer Skala von 1 bis 5?

Wie bewertest du die Umsetzung von Templates als normale Software Projekte auf einer Skala von 1

bis 5?

Figure B.2.: Evaluation Sheet page 2 of 4

78

Wie bewertest du die Trennung von Generator und Templates auf einer Skala von 1 bis 5?

Was könnte verbessert werden?

2.2. Erstellung und Wartung von Generatoren
Ziel: Die Erstellung neuer Generatoren und die Pflege und Verbesserung bestehender Generatoren

soll so einfach wie möglich sein, um eine große Anzahl von generierbaren Komponenten einer

Architektur zu erreichen, die den Wünschen der Nutzer entsprechen.

• Das Generator Framework bietet wichtige Funktionen und eine abstrakte Generator-Klasse

zur vereinfachten Erstellung von Generatoren

• Die Möglichkeit zur Komposition von Generatoren vereinfacht die Generatorentwicklung für

die inkrementelle Nutzung

• Der Generierungs-Life-Cycle mit den Phasen Configuring, Writing and Finalizing geben

Orientierung für Generator Entwicklung

• APIs für Benutzerfragen und zum Schreiben von Templates vereinfachen die

Generatorentwicklung

• Architektur-spezifische APIs erleichtern die Generatorentwicklung nach vorgegebenen

Konvention

• Generierte Dateien können flexibel in Ordnern organisiert werden

• Ein In-memory File Storage ermöglicht das Ändern von generierten Dateien in der Finalizing-

Phase vor dem endgültigen Schreiben der Dateien auf die Festplatte

Wie bewertest du die Entwicklung von Generatoren hinsichtlich dieses Ziels auf einer Skala von 1 bis

5?

Wie bewertest du die Trennung von spezifischen Generatoren und allgemeinen Generatorfunktionen

auf einer Skala von 1 bis 5?

Wie bewertest du die Möglichkeit zur Generator Komposition auf einer Skala von 1 bis 5?

Wie bewertest den Generierungs- Life-Cycle auf einer Skala von 1 bis 5?

Die Configuring- und Writing-Phase sollen durch eine definierte Aufgabe und dazu bereitgestellte

APIs die Generatorentwicklung vereinfachen.

Wie bewertest du die Configuring-Phase auf einer Skala von 1 bis 5?

Wie bewertest du die Writing-Phase auf einer Skala von 1 bis 5?

Figure B.3.: Evaluation Sheet page 3 of 4

79

B. Evaluation Sheet

Was könnte verbessert werden bei der Generatorentwicklung?

2.3. Generator Framework
Ziel: Durch ein gemeinsames und modulares Generator Framework kann dem Generatorentwickler

besser allgemeine und Architektur-spezifische Funktionen angeboten werden, um die Entwicklung

neuer und Wartung bestehender Generatoren zu verbessern.

• Trennung des Frameworks in eine Architektur-unabhängige und in mehrere Architektur-

abhängige Komponenten

• Neue oder verbesserte Funktionen in der Architektur-unabhängige Generator Framework

Komponente können von allen Generatoren genutzt werden

• Die Architektur-abhängige Generator Framework Komponente implementiert die

Namenskonvention und Dateiorganisation einer Architektur

Wie bewertest du das Generator Framework hinsichtlich dieses Ziels auf einer Skala von 1 bis 5?

Wie bewertest du die Trennung von Architektur-unabhängigen und Architektur-abhängigen

Generatorfunktionen auf einer Skala von 1 bis 5?

Was könnte verbessert werden?

Figure B.4.: Evaluation Sheet page 4 of 4

80

Bibliography

[Apa] Apache Velocity. https://velocity.apache.org/ (cited on page 49).
[Bau+15] C. Bauer et al. Java Persistence with Hibernate. 2snd. Manning Publications,

2015 (cited on page 50).
[Coc] A. Cockburn. The Ports And Adapters Architectre Pattern. http://

alistair.cockburn.us/Hexagonal+architecture (cited on page 4).
[Col+97] D. Coleman et al. “UML (Panel): The Language of Blueprints for Software?”

In: Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications. OOPSLA ’97. Atlanta,
Georgia, USA: ACM, 1997, pp. 201–205. isbn: 0-89791-908-4. doi: 10.
1145/263698.263736. url: http://doi.acm.org/10.1145/
263698.263736 (cited on page 26).

[Dca] The Clean Architecture. https://8thlight.com/blog/uncle-bob/
2012/08/13/the-clean-architecture.html (cited on pages 1, 4).

[Dub+08] Y. Dubinsky et al. “UML (Panel): The Language of Blueprints for Soft-
ware?” In: Information Technology Governance and Service Management:
Frameworks and Adaptations. IGI Global, 2008. isbn: 9781605660080 (cited
on page 3).

[Ecl] Eclipse Che. https://eclipse.org/che/ (cited on page 30).
[Emb] Ember. http://emberjs.com/ (cited on page 20).
[Eva03] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional, 2003. isbn: 0321125215 (cited on
pages 1, 4).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., 2002 (cited on page 36).

[Fow10] M. Fowler. Domain Specific Languages. 1st. Addison-Wesley Professional,
2010. isbn: 0321712943, 9780321712943 (cited on page 49).

[FS97] M. Fayad and D. C. Schmidt. “Object-oriented Application Frameworks”.
In: Commun. ACM 40.10 (Oct. 1997), pp. 32–38. issn: 0001-0782. doi:
10.1145/262793.262798. url: http://doi.acm.org/10.1145/
262793.262798 (cited on pages 36, 40).

[Gam+95] E. Gamma et al. Design Patterns. Vol. 47. Addison Wesley Professional
Computing Series February. 1995, pp. 1–429 (cited on pages 4, 49).

81

https://velocity.apache.org/
http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://dx.doi.org/10.1145/263698.263736
http://dx.doi.org/10.1145/263698.263736
http://doi.acm.org/10.1145/263698.263736
http://doi.acm.org/10.1145/263698.263736
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://eclipse.org/che/
http://emberjs.com/
http://dx.doi.org/10.1145/262793.262798
http://doi.acm.org/10.1145/262793.262798
http://doi.acm.org/10.1145/262793.262798

Bibliography

[Her03] J. Herrington. Code Generation in Action. Manning Publications, 2003. isbn:
9781930110977 (cited on page 13).

[Iso] “ISO/IEC/IEEE Systems and software engineering – Architecture descrip-
tion”. In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007
and IEEE Std 1471-2000) (2011), pp. 1–46. doi: 10.1109/IEEESTD.2011.
6129467 (cited on page 25).

[Jhi] JHipster. https://jhipster.github.io/ (cited on page 18).
[Kru95] P. B. Kruchten. “The 4+1 View Model of architecture”. In: IEEE Software

12.6 (1995), pp. 42–50. issn: 0740-7459. doi: 10.1109/52.469759 (cited
on pages 26–28).

[Lig] Lightbend Activator Documentation. https://www.lightbend.com/
activator/docs (cited on page 21).

[Mar03] R. C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003. isbn: 0135974445
(cited on page 67).

[Mav] Maven Archetype Plugin. https://maven.apache.org/archetype/
maven-archetype-plugin/ (cited on page 14).

[Mor15] K. Morris. Infrastructure as Code. O’Reilly Media, Inc., 2015 (cited on
page 27).

[Muc07] V. Muchandi. Applying 4+1 View Architecture with UML 2. Tech. rep. FCG
Software Service, 2007 (cited on pages 26–28).

[New15] S. Newman. Building Microservices. San Francisco: O’Reilly Media, 2015.
isbn: 978-1-4919-5035-7 (cited on pages 1, 5, 6, 58, 64).

[Rin97] D. C. Rine. “Success Factors for Software Reuse That Are Applicable Across
Domains and Businesses”. In: Proceedings of the 1997 ACM Symposium
on Applied Computing. SAC ’97. San Jose, California, USA: ACM, 1997,
pp. 182–186. isbn: 0-89791-850-9. doi: 10.1145/331697.331736. url:
http://doi.acm.org/10.1145/331697.331736 (cited on page 1).

[RP12] K. Rimple and S. Penchikala. Spring Roo in Action. Manning Publications
Co., 2012 (cited on page 17).

[RW11] N. Rozanski and E. Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. 2nd ed. Addison-Wesley
Professional, 2011. isbn: 032171833X, 9780321718334 (cited on pages 2, 25,
28–30).

[Som10] I. Sommerville. Software Engineering. 9th. USA: Addison-Wesley Publishing
Company, 2010. isbn: 0137035152, 9780137035151 (cited on pages 1, 67).

[Vli08] H. v. Vliet. Software Engineering: Principles and Practice. 3rd. Wiley Pub-
lishing, 2008. isbn: 0470031468 (cited on page 1).

82

http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
https://jhipster.github.io/
http://dx.doi.org/10.1109/52.469759
https://www.lightbend.com/activator/docs
https://www.lightbend.com/activator/docs
https://maven.apache.org/archetype/maven-archetype-plugin/
https://maven.apache.org/archetype/maven-archetype-plugin/
http://dx.doi.org/10.1145/331697.331736
http://doi.acm.org/10.1145/331697.331736

Bibliography

[Wil+16] J. Willis et al. The DevOps Handbook. IT Revolution Press, 2016. isbn:
9781942788003 (cited on page 1).

[Yeo] Yeoman. http://yeoman.io/ (cited on pages 15, 41).
[Zü05] H. Züllighoven. Object-Oriented Construction Handbook. Ed. by H. Zül-

lighoven. San Francisco: Morgan Kaufmann, 2005. isbn: 978-1-55860-687-6
(cited on page 40).

83

http://yeoman.io/

	Introduction
	Structure of this Thesis

	The Motivation and Requirements for a Code Generator
	Knowledge Sharing in a Corporate Environment
	Motivation for a Code Generator
	The Problem Statement
	Case Study at KISTERS AG
	Requirements for a Code Generator
	Summary

	Related Work
	Generator Frameworks
	Framework-specific Code Generators
	Summary

	Code Generation Concepts for Operation-sensitive Development Environments
	Background: Architecture Views and Viewpoints
	Software Project Model
	Stakeholders
	Summary

	Code Generator Architecture and Concepts
	The Generator Architecture
	Generator Roles
	Generator Framework Layer
	Architecture and Technology Layer
	Generator Layer
	Generator Application Layer

	Realization
	Implementation of the Generator Framework
	Implementation of the Architecture and Technology Layer
	Implementation of the Generator Layer
	Implementation of the Generator Application Layer

	Evaluation
	Evaluation of the Implementation Regarding the Requirements
	Architecture support
	Incremental Code Generation
	Ease of Use
	Knowledge Sharing
	Case Study at KISTERS AG
	Discussion
	Summary

	Conclusion
	Summary
	Future Work

	Requirements Questionnaire
	Evaluation Sheet
	Bibliography

