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Abstract

Combinatorial testing is a model-based testing technique. It guarantees that at least
one test case covers any combination between values of t or less parameters. Most
combinatorial testing is done manually, but there are also attempts to integrate it into
automated testing frameworks. In light of the increased movement towards continuous
integration/delivery this is extremely important.

After the execution of a combinatorial test suite, the tester is left with the knowledge of
which test cases failed. To correct the defect which caused the failure(s), fault localization
for combinatorial testing attempts to find the sub-combinations responsible for failures.
Numerous fault localization algorithms have already been developed in this active field of
research. Some researchers already build a tool to support manual, but not automated,
fault localization. The absence of such automation hinders widespread adaption and
faster development of new algorithms.

This thesis presents an approach to automated fault localization. After a brief overview
of the current state of combinatorial testing research, a general concept is presented.
This includes requirements every fault localization automation framework must fulfill.
From these requirements a general architecture is derived. As a proof of concept, this
thesis presents a Java implementation of said framework. Finally, the implementation is
evaluated and possible future areas of research are identified.
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1 Introduction

Software testing can be considered one of the most important disciplines in software
development; due to the increasing complexity of our programs, it becomes even more
critical. As a result, modern software development can cover nearly every part of a
program by tests. There are unit, component, integration, end-to-end, performance,
and many other kinds of tests. To support developers and quality assurance workers
in managing this testing flood, researchers developed numerous approaches; boundary
values and equivalence class testing being two famous examples.

Another approach is combinatorial testing (CT). It originated in design of experiments
and testers can use it to select relatively small test suites covering many input parameter
interactions [KR02]. Combinatorial Testing is a model-based technique. Consequently,
it does not create test cases based on a real piece of software, but rather through
an abstraction of the system under test (SUT). Basically, testers model inputs and
configurations as parameters, each having a number of different values (e.g. an operating
system can be Windows, Linux, or MacOS) [UPL12]. Now, the general idea behind
combinatorial testing is not to test the Cartesian product of the parameter space, but
rather all value-combinations of any t or fewer parameters, thus reducing the number of
necessary test cases, as each test case contains multiple t-value-combinations [KR02].
A large percentage of combinatorial testing research is focused on developing new

algorithms to generate smaller test suites, or reducing the creation time. Other fields
include the creation of models, real world applications, constraint handling, test case
prioritization, and negative testing [NL11; FL18]. Additionally, test automation is an
important topic. As Nie et al. noticed, manual combinatorial testing can quickly become
impractical [NL11]. Therefore, multiple frameworks support completely automated CT
while integrating it into a regular development environment, one example being JCUnit
[Uka17].

In recent years, fault localization (FL) also became a prominent topic in CT research
[SNX05; Wan+10; Gha+13]. In normal combinatorial testing, the tester receives a list
of successful and failed test cases. Since no more information is given, developers have
to manually search for detected defects with exemplary input combinations taken from
these failed test cases. To help with locating the defect, fault localization attempts to
provide the underlying, smaller combination which is responsible for the failure of one
or multiple test cases. Instead of an n-value test case, developers can now, for example,
work with a t-value sub-combination, and therefore better narrow down the possible
defect in programmed code [Gha+15].
While researchers already developed many fault localization algorithms for manual

use, the problem of automation remains largely unsolved. Ghandehari et al. developed a
tool called BEN which automatically calculates additional test cases based on given test
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1 Introduction

results, but it still requires manual execution of these additional test cases.

Contributions

The goal of this thesis is to develop a general architecture for a completely automated fault
localization framework, and implement it as a proof of concept. The architecture should
allow for extension through any test case generation, and fault localization algorithm.
To reach this goal, the thesis makes the following contributions to combinatorial testing
research:

1. It reviews the current state of automation in combinatorial testing, and approaches
to fault localization.

2. An architecture for a general automated fault localization framework is presented.
This architecture is derived from requirements which such a framework should
fulfill. It could be used as a blueprint for developing similar frameworks in different
programming languages.

3. A Java program named CombTest implements the architecture as a proof of concept.
All of CombTest’s extension points are described so that researchers could develop
new algorithms for use in the framework. To give some examples, CombTest
includes a few existing fault localization algorithms, and additionally, this thesis
also presents a JUnit5 extension for using CombTest natively in JUnit.

4. Finally, it identifies future work in the context of CombTest.

Structure

This thesis consists of 7 different chapters, the first of which is this introduction. Next,
chapter 2.1 introduces general concepts of combinatorial testing and fault localization,
which are needed to understand later parts of the thesis. In chapter 3, work related to the
concept of an automated fault localization framework is presented. Afterwards, chapter 4
lists objectives and requirements which the framework has to fulfill. These requirements
are then transformed into a general architecture. Next, a Java implementation of the
general architecture is presented in chapter 5, and possible extension points are shown.
This includes instruction on how to integrate custom fault localization algorithms into
the framework. Chapter 6 then evaluates CombTest according to the requirements, one
quality model, and its ability to support fault localization through different algorithms.
Finally, chapter 7 recapitulates the contributions presented in this thesis and proposes
future areas of research.
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Contents
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2.2.2 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The Java Programming Language . . . . . . . . . . . . . . . . 12
2.3.2 Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 JUnit(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Fully understanding the following chapters requires some background information. There-
fore, this chapter gives an overview on three subjects. First, section 2.1 presents basics of
the combinatorial testing technique. Later chapters use them in requirements and descrip-
tions of implementation details. Since chapter 4 will then transform these requirements
into a general architecture, it is important to know some common architectural design
principles. As an example, section 2.2 explains Robert C. Martin’s Clean Architecture.
Lastly, important technologies referenced throughout this thesis are explained in section
2.3.

2.1 Combinatorial Testing

Empirical studies have shown error correction to be significantly more costly in later
development phases. Steckline et al. revealed an increase factor of three to eight in the
design phase, 21-78 in test and up to 1615 in operation, all relative to correction costs in
the requirements phase [Ste+04]. Due to rapid cost rise, it becomes imperative to detect
as many errors as possible in early phases. This led to a widespread development and
use of sophisticated software testing techniques.
In general, one can categorize these techniques into two approaches: black-box and

white-box testing. While the latter derives test cases directly from source code, black-box
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2 Background

testing focuses on inputs instead. One famous example would be equivalence class testing
(ETC). Here, the tester splits all inputs of his/her test into classes for which, in the context
of this test, it can be assumed that any contained values are interchangeable. Regardless
of which representative value the tester eventually chooses from one equivalence class, in
theory they should all lead to the same test result [ND12].

2.1.1 Interaction Faults

When testing a system under test (SUT) with multiple inputs, ETC offers two options:
either create test cases in such a way that each individual representative appears in at
least one test case, or use the Cartesian product between the representatives of all inputs.
Employing the Cartesian product leads to a very large number of test cases, while testing
every value at least once does not guarantee that most faults are found. For example
consider the following piece of code:
1 public void method(int waterLevel, double humidity, ...) {
2 if (waterLevel >= 100) {
3 // working code
4 } else {
5 if (humidity > 10) {
6 // non-working code
7 }
8 }
9 }

Source Code 2.1: InteractionFault.java

The fault (line 6) would only be detected by a test case having a water level lower than
one hundred and a humidity higher than ten. While we may have a test case covering
this particular fault by chance, it would be better to systematically test for all interaction
faults of a certain size. Combinatorial testing provides just that. The idea is to make
sure that all possible combinations between a fixed number of so called parameters are
covered by at least one test case. To better understand this, the next sections will first
introduce some terminology.

2.1.2 Parameters and Values

The most important input for combinatorial testing are the parameters and their values.
They determine which concrete input values later appear in test cases. Generally speaking,
parameters are the inputs for tests or configure the test’s environment, depending on the
current use case of combinatorial testing. Examples for parameters are the operating
system, the web-browser on which sites are loaded, but also real input values to systems
like the humidity and water level from Listing 6.

Only giving parameters to a combinatorial test does not do any good. No systematic
tests can be designed when given only information like operating system, browser, humidity
and water level. For each parameter the tester has to decide on real (representative)
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2.1 Combinatorial Testing

Name Values
OS Windows Linux MacOS Android iOS
Browser Chrome Edge Firefox Safari
Ping 10 ms 100 ms 1000 ms
Speed 1 KB/s 10 KB/s 100 KB/s 1000 KB/s

Table 2.1: Parameters for the running example

values which can be tested. For example, values for operating system could be Windows,
MacOS, Linux and Android. When each parameter now has its values, combinatorial
testing can derive concrete test cases. Table 2.1 depicts a few parameters with their
values for testing a browser game in different conditions. It will serve as a running
example in later sections.
There are some conditions which parameters for combinatorial tests have to meet.

Testers should always give at least one parameter, otherwise a combinatorial testing does
not make any sense. Additionally, each parameter should have at least two values. If it
would have none at all, the parameter could just be removed, and if there is just one
value, the parameter is a constant, and only makes the development of combinatorial
test suites unnecessarily harder.
An interesting sub-topic of combinatorial testing is how testers can find values for

parameters. Generally, they can employ other testing techniques such as ETC or
boundary-value analysis. Often, some parameters don’t have a complex value space, like
operating system, and the software requirements directly specify all possible values.

Throughout this thesis, n will denote the number of parameters.

2.1.3 Combinations

A test case in combinatorial testing is a combination of values, where there is exactly
one value from each parameter. For example, (Windows, Edge, 1000 ms, 1 KB/s) is a
test case for the parameters from Table 2.1. Additionally to full test cases, terminology
in combinatorial testing also denotes incomplete ones as combinations. This means some
parameters do not have to be set. In that case, they are denoted with a dash in the tuple.
A combination of Windows and Firefox then looks like this: (Windows, Firefox, —, —).

That is also an example for a 2-value-combination. t-value-combinations in general are
combinations in which t parameters have a value. The space of all possible combinations
forms a containment hierarchy. A combination c1 contains c2 if all values which are set in
c2 have the same value in c1. Consequently, (Windows, Firefox, —, 100 KB/s) contains
(Windows, Firefox, —, —) and (Windows, —, —, —).

5



2 Background

2.1.4 Testing Strength
Now that last section explained all basic terminology, this section describes the actual
process of combinatorial testing, and the philosophy behind it. Besides parameters and
values, the most important configuration option for combinatorial tests is the so called
testing strength, often denoted with t. It describes to which extend combinations of
parameter-values should be tested. A given testing strength of t means that all for
possible t-value-combinations there should be least one test case containing it (also called
t-way-testing). The advantage of testing only all t-value-combinations and not all n-value-
combinations like strong ETC, is that it needs significantly fewer test cases [KWAMG04].
If we look at the test case (Windows, Edge, 1000 ms, 1 KB/s), we can see that it contains
6 different 2-value-combinations: (Windows, Edge, —, —), (Windows, —, 1000 ms,
—), (Windows, —, —, 1 KB/s), and so forth. In fact, CombTest’s IPOG algorithm
implementation generates just 23 test cases for 2-way-testing, instead of 5 · 4 · 3 · 4 = 240
for exhaustive testing.
The difficult question which remains is: What t to choose? Should one only test all

2-value-combinations to have high confidence in the SUT? Or do you need t = n− 1 or
t = n? Some empirical studies researched this question. For example, Richard Kuhn et
al. examined the bugs found in different systems to check which t would suffice to detect
them [KWAMG04]. Figure 2.1 depicts the results.
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Figure 2.1: The percentage of errors over the number of involved parameters for four
different software systems as reported by [KWAMG04]

One of the most noticeable results is that all defects would have been found by 6-way-
testing. Considering the number of parameter and values typically found in such complex
systems, this reduces the number of test cases significantly. One can also see the decline
of new errors discovered by testing with an higher strength. It is generally assumed that
for nearly all systems only a very small t is needed [KWAMG04]. And here the strengths
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2.1 Combinatorial Testing

of combinatorial testing really comes into play.
Finding a minimal test suite which contains all possible t-value-combinations is an NP

complete problem [YZ09]. Therefore, most algorithms currently developed only provide a
near optimal test suite. Usually combinatorial testing employs either greedy or heuristic
algorithms. Examples include IPOG and simulated annealing for combinatorial testing
[Jia+07; PN12].

2.1.5 Constraints

After an algorithms constructs a test suite, the tester has to execute all test cases.
Otherwise, some t-way combinations may not be tested. This can be problematic, or
impossible, because of constraints on parameters and values. For example, the IPOG
algorithm could include (Windows, Safari, 100 ms, 1 KB/s) in a 2-way-testing suite for
the parameters in Table 2.1. Currently, Apple does not provide a Safari installation for
Windows computers. Hence, we cannot execute the test case. Deciding not to execute
it could mean that perfectly valid 2-way-combinations like (Windows, —, 100 ms , —)
could potentially go uncovered. This is where constraint handling comes into play.

There are numerous ways to deal with constraints in combinatorial testing. They can
be categorized into three different approaches. The abstract parameter and sub-model
method are both applied to the parameters and values before a test suite is generated.
They modify parameters or split values into different models to ensure that no invalid
combinations can occur in the generated test suites. Another approach is the avoidance
of invalid test cases during the generation itself. Researchers have modified IPOG and
other algorithms to accept constraints in the form of explicit invalid combinations and
mathematical expressions like OS = Windows⇒ Browser 6= Safari. In a last method,
multiple valid test cases preserving the t-value-combinations replace each final test case
containing an invalid combination [GOM06].

In practice, most tools provide support for the avoidance method. It has a very good
usability, because the user simply has to list all constraints and invoke the tool like
s/he would in a constraint-free environment. For all other approaches, an additional
invocation is necessary. Additionally, this method generates relatively small test suits.
While all constraint handling techniques introduce a test case overhead, the number of
additional test cases varies per method [GOM06].

Together, the parameters, testing strength, and constraints form the input parameter
model (IMP), a general input for combinatorial tests.

2.1.6 Negative Testing

Usually, there is a distinction of testing with valid values to check for a correct result,
and testing the SUT with unexpected input to assure correct error handling. The
second variant is called negative (combinatorial) testing. Research presents two different
approaches, which one can combine if necessary.
One way to test for correct error handling is to include some invalid values to each

parameter. For example, testers can use robustness boundary value analysis to find
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2 Background

Test Case
OS Browser Ping Speed Result

Windows Chrome 10 ms 1 KB/s pass
Linux Chrome 100 ms 10 KB/s pass
MacOS Chrome 1000 ms 100 KB/s pass
Android Chrome 10 ms 1000 KB/s fail
Linux Chrome 10 ms 1000 KB/s fail
Android Firefox 100 ms 10 KB/s pass
iOS Edge 100 ms 1000 KB/s pass
MacOS Chrome 10 ms 1000 KB/s fail

Table 2.2: Excerpt of a possible test results list for the example in Table 2.1

values which the SUT should not accept. The algorithm used to generate test suits
then needs to add additional test cases testing only these invalid values. It needs to
treat them separately, as otherwise the so called masking effect can occur, where valid
t-value-combinations are not tested for a success scenario because they are only present in
test cases which fail. PICT, a test cases generation tool, supports this approach [Cze06].

A rather new approach is creating invalid test cases using already specified constraints.
At first, the tester splits all previous constraints into two categories: forbidden and
error. The first one includes all constraints removing combinations from test case which
really cannot be applied to the model because they are impossible to construct (e.g.
OS = Windows⇒ Browser 6= Safari). Error constraints describe those combinations
which could be entered as input values, but invoke some sort of error. For example,
telling the server that the connection has a negative ping should result in an error. For
each of these error constraints, negative testing can construct test cases by negating the
current error constraint, and therefore construct a new set of constraints under which a
combinatorial test algorithm can now construct additional test cases. For example, when
the first error constraint is negated, all test cases constraint-aware IPOG generates in this
pass must only violate this one negated constraint and no other. Consequently, testers
can later attribute failures in negative test cases to specific error constraints [FL18].

2.1.7 Fault Localization

After a tester executes a combinatorial test suite, s/he may receive a result list like the
one in Table 2.2. Next, the software’s developer has to locate the defect in the source
code. While this could be relatively simple if the IPM only includes few parameters, the
difficulty rises with the number of parameters. For example, in a combinatorial test with
over 40 parameters, having one failed test case does not really help a developer to locate
the defect and fix it. This is where fault localization for combinatorial testing comes into
play.
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2.1 Combinatorial Testing

Failure-Inducing Combinations

The main problem with the test results from Table 2.2 is that there could be multiple root
causes for each failed test case regarding the parameters involved. Combinatorial testing
research calls such a root cause a failure-inducing combination. These combinations
do not have to be complete, so some values do not need to be set. If a combination is
failure-inducing, each test-case which contains it will fail. If a developer were to know
that the failure-inducing combination (—, Chrome, 10 ms, —) causes all failing test
cases, s/he could narrow down the possible defect locations in the code. This is why
fault localization is needed in combinatorial testing.

Approaches

Over time, researchers developed several algorithms which assist the tester during
the location of failure-inducing combinations. These algorithms can be split into two
categories: non-adaptive and adaptive.

Non-Adaptive Nearly all fault localization algorithms introduce some additional test
cases to further narrow down which combinations can possibly be failure-inducing. This
is needed since the original test suites do not hold enough information as section 2.1.7
described. Non-adaptive algorithms do not generate these test case based on test results;
instead, they introduce additional test cases in the generation step [Zhe+16].

One example for a non-adaptive method is locating and detecting arrays (LDA) [CM08].
It uses information about parameters and values to create an initial test suite which
allows for a detection of failure-inducing combinations via failure of specific test cases.
While non-adaptive methods have the advantage of generating only additional test

cases in the normal generation step, they usually have other limitation which prevent use
in practice. Examples are a maximum number of detectable failure-inducing combinations,
or a low testing strength [Zhe+16]. Additionally, the test suite is always larger than
normal, even if all test cases pass. This results in a higher overhead.

Adaptive This thesis focuses on adaptive fault localization algorithms and their complete
automation. In contrast to their non-adaptive counterparts, these algorithms dynamically
generate more test cases based on results from the initial test suite. To further understand
adaptive fault localization, section 3.2 explains one algorithm.
Adaptive algorithms have some advantages over non-adaptive variants. Since they

base additional test cases on initial test results, none are generated if there were no
failures. This reduces the time spent for testing if all test cases pass. Additionally, one
needs fewer test cases since the algorithms know which combinations to focus on during
the generation of further test cases [Zhe+16]. On the other side, adaptive algorithms
introduce an additional testing step which developers have to implement in combinatorial
testing tools and automate as much as possible. That is the goal of this thesis.
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Figure 2.2: Class diagram for the dependency inversion principle

2.2 Clean Architecture
Many developers will say that one of the most important parts of a software product
is to have a good software architecture. There is, however, the problem of defining
what a (good) software architecture actually is. In an effort to document this, the
Software Engineering Institute of the Carnegie Mellon University compiled a list of about
30 definitions [SEI10]. Nearly all of them agree that it is some form of abstraction
from actual implementation details and data structures, dealing with general system
components. On the other hand, Taylor et al. take a more process-oriented approach and
define software architecture as a set of design decisions [TMD09]. Additionally, Robert
C. Martin defines the goal of software architecture as “to minimize the human resources
required to build and maintain the required system” [Mar17].
Even though a multitude of definitions exists, nearly all papers or books agree that

you should follow a set of rules to reach a good architecture. While this does not mean
an architecture is necessarily good if one follows all rules, most of them are at least a
good indicator. In his book Clean Architecture, Robert C. Martin defines such a set of
concepts and rules which all accumulate to his version of a good architecture. The next
sections will explain the most important ones, which the architecture presented in section
4.2 uses.

2.2.1 SOLID- and Component Principles
Martin first grouped the SOLID principles together in 2000 [Mar00], and generally
applies them just above the programming level. They define how one should design a
good software module with concern to boundaries, and how multiple modules should
interact with each other. While architecture normally works on component levels, the
SOLID principles are still very important to good architecture, as one can also apply
them to whole components. This can be seen with Martin’s component principles, which
generalize the SOLID principles. The following list shortly explains each SOLID principle:

• Single Responsibility Principle: A module should only be responsible for one part
of the functionality. This means, that it only has one reason to change; that is
when the functionality it is responsible for changes.

• Open-Closed Principle: At the same time developers should be able to add new
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functionality to a module (open), but other programmers need to depend on existing
code, which therefore should not be modified (closed).

• Linkov Substitution Principle: This principle is probably best explained by interfaces
in any programming language (or abstract classes). It states that every part of a
program should be interchangeable if the new part adheres to the old contract. In
Java, you could imagine an interface to be such a contract, and you should be able
to switch the concrete class implementing an interface without the system’s code
needing to change.

• Interface Segregation Principle: A module should not be forced to depend on any
functionality it does not use. Consequently, programmers should split big interfaces
into smaller interfaces if they combine separate parts. If one client is then only
interested in one part, it does not need to depend on the big interface. As a result,
the client and interface module become more decoupled.

• Dependency Inversion Principle: A module should not rely on low-level modules,
but on abstractions. Figure 2.2 visualizes this concept. The Manager no longer
depends on the low-level DatabaseConnector, but on the high-level Repository
abstraction. As a result, developers can easily switch out concrete implementa-
tions (Linkov Substitution Principle). This pattern is used throughout the entire
architecture and realization and is therefore very important.

Derived from SOLID, Martin presents three principles describing the cohesion classes
should have inside individual software components. It is not possible to achieve all of
these principle at the same time, so a system’s architect has to decide which ones s/he
will use.

• The Reuse/Release Equivalence Principle: This is a very weak principle stating
that the grouping of classes into components should make sense, both to user and
developer, from a release perspective. To be exact, this means that modules which
can be independently released should not be inside the same component.

• The Common Closure Principle: All modules in one component should just have
one reason to change. This is equivalent to the Single Responsibility Principle, just
for components instead of modules.

• The Common Reuse Principle: Components should only consist of modules which
are reusable together. Like with the Interface Segregation Principle, clients should
not have to depend on components (code) they do not really need.

2.2.2 Details
One of the topics Martin argues passionately about are frameworks and databases. In
his opinion, looking at a software product’s architecture should not show you which
framework the developer used, but rather what kind of system it is. He compares this
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to building’s architecture where you can normally see what type of building a blueprint
depicts and not how it was constructed.
As such, no application code should actually depend on any specific framework,

database, or front-end presentation mode. Instead these parts are just small details in
a software product, and developers can “easily” change them. One can directly derive
these rules from the SOLID principles, such as the Linkov Substitution- and Dependency
Inversion Principle.
With all details at the outermost layer, Martin then defines a Clean Architecture to

be made out of concentric circles, each depending only one the next inner circle, with the
dependencies never going outward. As a result, developers can easily change all details,
and business rules only depend on entities, which depend on no other components at all
[Mar17].

2.3 Technologies

As a proof of concept, chapter 5 will later explain the implementation of a fault localization
framework. To develop such a framework, one needs multiple technologies. This chapter
will present the most important ones, namely Java, a popular programming language, the
build- and dependency management tool Maven, and JUnit. Each section will only give
a brief overview of the most important features this thesis uses. For more information,
they provide links to common resources on the Internet. If you are already familiar with
these technologies, feel free to skip to chapter 3.

2.3.1 The Java Programming Language

Sun Microsystems first introduced the Java programming language in 1995. It is an
object-oriented language with many build in useful libraries for different disciplines, like
database connections (JDBC), networking, multi-threading and much more [HC02]. Since
its introduction continuously rose in prominence, and is now leading the TIOBE index
as the most popular programming language [TSB18]. Today, it is mostly used in the
backend of popular services, for example, by Netflix and Twitter [OC18]. While the
standard Java library alone is very good, where the language really shines is its ecosystem.
There are thousands of libraries for common use cases ranging from machine learning to
web API development [Sky18; PS17].

2.3.2 Maven

Nearly every language has a tool for dependency management and complex build processes.
For a long time, developers used Apache Ant, an XML-based build tool. During the
development of the Jakarta Turbine project, Apache programmed Maven as a successor
to reduce XML-duplication and ease general complex management [TASF04]. In a
non-representative survey in 2017, Maven had a market share of 76% [BS17].

12



2.3 Technologies

Maven, like Ant, is an XML-based tool and offers sophisticated build, dependency
management, and plugin support. Developers store all information necessary to start
Maven in a pom.xml file. For a small project, it may look like the following example:
1 <project>
2 <modelVersion>4.0.0</modelVersion>
3
4 <groupId>de.rwth.swc.sample</groupId>
5 <artifactId>sample</artifactId>
6 <version>1</version>
7
8 <dependencies>
9 <dependency>

10 <groupId>de.rwth.swc.combtest</groupId>
11 <artifactId>combtest-junit-jupiter</artifactId>
12 <version>1.0-SNAPSHOT</version>
13 <scope>test</scope>
14 </dependency>
15 </dependencies>
16 </project>

Source Code 2.2: pom.xml

This file declares a project called sample in its first version. It uses just one dependency:
CombTest’s JUnit extension. The <scope>test</scope> part specifies that only test
classes may use CombTest, and that maven will not package it with code deployed to
production.
Maven also allows the definition of sub-modules. This essentially means that devel-

opers can split a project into multiple sub-projects, and keep common information (e.g.
dependency versions) in a parent pom.xml.

Maven splits it build process into seven phases: validate, compile, test, package,
verify, install, and deploy. The test phase runs all unit tests, install makes
the project available for local use. This means other projects can import it using the
dependency management system. Further information about the Maven life cycle is
available at [TASF18].

2.3.3 JUnit(5)
In earlier chapters this thesis established that not testing software can be very dangerous.
Since testing is such an important task, and many elements are reusable across projects,
Kent Beck established the xUnit family. Fist, there was only a framework for Smalltalk
testing, but later on, frameworks for all famous programming languages appeared [Bec97].
Often, the name of these testing frameworks begins with the first character of a pro-
gramming language’s name; hence, there is JUnit for Java, RUnit for R, and SUnit for
Smalltalk.
Currently, JUnit5 is the latest version after JUnit4 became too complex to adapt it

to new features such as Java 8’s lamdas [Phi15]. It introduces many interesting new
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concepts over JUnit4. One of the most important points is a clear differentiation between
JUnit Jupiter and JUnit Platform. Jupiter is only one implementation of a TestEngine,
and developers can add other test engines dynamically. The platform does not know
anything about the execution of tests. Instead, it can only tell test engines to discover
tests or execute specific ones. Due to the separation of concerns, developers can still use
old JUnit4 tests, since there is a JUnit4 TestEngine.
Writing one test is very simple and requires only the use of one annotation:

1 @Test
2 void test() {
3 assertEquals(9, square(3));
4 }

Source Code 2.3: SimpleJUnitTest.java

Where JUnit5 truly shines is in its extension system. For example, dynamic test
generation is possible via TestTemplateInvocationContextProvider, and for passing
parameters to test cases developers can use a ParameterResolver. Combined, this
functionality allows for multiple invocations of the same test method with different values
[Bec+18]. Parameterized tests are a good example:
1 @ParameterizedTest
2 @ValueSource(ints = {2, 4, 6})
3 void even(int number) {
4 assertEquals(0, number \% 2);
5 }

Source Code 2.4: ParameterizedJUnitTest.java

As this example demonstrates, parameterized tests are very near to what combinatorial
tests could look like in JUnit5. One test method is reused multiple times for different input
parameters. Testers define these parameters by some external source (@ValueSource or
an input parameter model).
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This chapter provides an overview of the current state of research connected to automated
fault localization for combinatorial testing. Until now, there has been no work connecting
both the automation of combinatorial test suite generation and fault localization. However,
both approaches are actively researched separately. The next sections will present the
current state of research.

3.1 Automated Combinatorial Testing

One of the most researched topic in the field of combinatorial testing is the actual
generation of t-way test suites [NL11]. Often, researchers only implement these algorithms
as a proof of concept. Nearly always, those implementation communicate with the user
over a CLI or GUI [Cze06]. This means the user has to treat the generation step separated
from actual testing. When these tests are not automatable, this is acceptable. With
an increase in automatic tests however, automated combinatorial testing becomes more
attractive. Instead of having to copy the whole generated test suite into the employed
test automation software, it performs the execution by itself, and therefore tester can
quickly change parameters, constraints and testing strength [UQ17].
One of the biggest example for an automated combinatorial testing tool is JCUnit

[Uka17; UQ17]. It is based on the popular, but outdated, Java testing framework JUnit4.
Users can specify multiple parameters as methods which return factories. These factories
then provide concrete values to JCUnit at runtime [Gam+95]. Due to the general
definition of the factory interface used to provide values, one can use any valid Java
object or primitive as a value. This means even less work for the developer, as s/he does
not have to convert textual representations to actual objects, as most other combinatorial
testing framework require [Ret14; Cze06; Uka17]. Additionally to factories for parameters,
testers can also use the familiar concept of functions to model constraints. With the
correct annotations and a boolean return value, the framework can evaluate whether a
combinations is valid solely based on a method. Since Java is a Turing complete language,
developers can write every possible constraint.

JCUnit does not support fault localization in any form. The results it returns are the
failed and passed test cases shown by JUnit. Additionally, one can not provide a custom
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Figure 3.1: BEN’s basic algorithm

generation algorithm [Uka17].

3.2 Fault Localization Tools
Researchers already developed many algorithms for fault localization. Examples include
BEN, AIFL, IterAIFL, Improved Delta Debugging (IDD) and comFIL [Gha+13; SNX05;
Wan+10; LNL12; Zhe+16]. While most of them were implemented as part of the
respective paper, nearly none of those implementations are available publicly. Until
now, only Ghandehari released the tool BEN for public use. While BEN also tries to
find the defects’ location in the provided source code, it first performs a localization of
failure-inducing combinations.
Figure 3.1 show the basic algorithm. First, BEN takes all failed test cases from

the initial generation and extracts possible failure-inducing combinations (suspicious
combinations) (1). Next, it uses the successful test cases to reduce the list of suspicious
combinations (2), as no failure-inducing combination can appear in a successful test case.
In (3), BEN uses an internal ranking schema to order the combinations according to their
probability of being failure-inducing. To achieve this, it assigns and internal probability
of being in a failure-inducing combination to each parameter-value combination (e.g.
OS=Windows) based on occurrences in failed test cases and additional criteria. Averages
over parameter-value combinations in suspicious combinations then give each combination
an accumulated probability of being failure-inducing. For the first few combinations in
the ranking, BEN generates new test cases which contain these combination (4). Results
from the test cases’ execution is then used to further reduce the number of suspicious
combinations (6). The algorithm can then start over at step (3) until it meets a stopping
condition (7) [Gha+13].
To use BEN, the user has to jump between the actual SUT and BEN’s GUI. S/he

must enter each iteration’s test result into BEN via files, and receives further manually
executable test cases. The user then needs to execute all additional test cases generated
into a text file. This cycle can repeat a few times.
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This chapter introduces the general concept of a framework executing automated fault
localization for combinatorial testing. Section 4.1 explains general requirements which
the framework needs to fulfill to guarantee good fault localization in an automated
setting. Next, section 4.2 describes an architecture which satisfies all requirements and
the important concepts of Clean Architecture.

4.1 Requirements
Before one can actually begin the development of an architecture for a program, one needs
to know the fundamental requirements placed upon it. They define what functionality the
system offers (functional requirements) and how it does so (non-functional requirements).
To define them, it is best to first go over the goals and objectives.

4.1.1 Goals and Objectives

As we saw in chapters 2.1 and 3, many algorithms for combinatorial test suite generation
and fault localization exist. Researchers have also automated the general combinatorial
test execution. For fault localization, no such automation attempt has yet been made.
This thesis provides that missing link. Therefore, some very general objectives can be set
up for the concept.
Firstly, the framework should reuse existing algorithms. Reuse is one of the core

concepts of software development, and prevents that the same work is done multiple
times. For example, the framework should not attempt to implement new algorithms
for fault localization, but should provide interfaces to use existing ones. Secondly, the
framework should be forward facing with regards to future extensibility. As combinatorial
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testing is a field of very active research, new ideas are bound to emerge, and this framework
would be useless if it did not support them. One example for these new ideas is negative
testing with the help of error constraints as presented in [FL18].
Despite being very actively researched, combinatorial testing is not known by many

people outside the field of software testing. As such, the framework should be easy to use
to provide a good introduction to the field. If there are many hurdles to starting with
combinatorial testing, mainstream developers will not use it.

Additionally to normal test developers, the framework should also make life easier for
combinatorial test researchers. At the moment, there is no tool which allows researchers
to test their new algorithm extensively. The presented framework should remove much
of the boilerplate code needed to get a test generation or fault localization algorithm to
run with arbitrary input data.

All these objectives are very important for the requirements’ definition and can therefore
be found in many of them.

4.1.2 Users
To find all requirements it is often helpful to look at the possible users of the program.
In case of the framework this thesis presents, there are just two important user groups
which the objective already mentioned: testers and algorithm developers. The listing
of all requirements is structured into these two groups. For every group, all functional
and non-functional requirements are listed, each of which is explained in depth. Some
requirements are relevant for both user groups. In that case, the list only contains them
once for easier identification, but the requirement then includes all important aspects for
both user groups.

4.1.3 Tester Requirements
This section presents all requirements which are important to people who either write
tests or have to execute them.

F1 Configuration of the Input Parameter Model The user can specify the input
parameter model for a combinatorial test. This includes the following parts:

a) All parameters and values. Per IPM, the user has to give at least one parameter.
Each parameter must have at least two values.

b) The testing strength as described in section 2.1.4. The user can specify it as any
number in the range of 1 to the number of parameters (inclusively).

c) Constraints on parameters and values.

If a user provides an input parameter model which does not meet all criteria described
above, the framework must notify the user. For every test, the user can specify a new
IPM, but s/he may also reuse an existing one.
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F2 Configuration of Test Case Generators The user can specify algorithms which
generate initial combinatorial test cases. Since there are multiple, independent ways to
generate test cases (like normal IPOG tests and negative test cases), the system must
allow the user to specify an arbitrary number of generators. The user can reuse every
generator across multiple combinatorial tests.

F3 Configuration of the Fault Localization Algorithm Additionally to test case gen-
erators, the user can also specify an algorithm which the framework must use for fault
localization. If the user does not configure any fault localization algorithm, the fault
localization feature is disabled.

F4 Initial Generation When the user starts the combinatorial test, first, the framework
calls all generators to get their initial test cases. For this, the framework passes the IPM
specified by the user to every generator to make sure that all test cases are meant for the
same model. If the user specified no generators, the system returns no test cases. It is
important that it does not crash in such a case.

F5 Test Results The user must have an option to pass test results to the framework.
Without test results, no fault localization would be possible. The most important part of
this framework is that there is a way to pass test results to the framework automatically.
Otherwise, no automated fault localization is possible. There are two general approaches
the framework can take (non-exclusively):

a) The user gets all generated test cases from the framework and has a way to give all
test results back to the framework. This means that some program evaluates the
test cases’ result outside of the framework.

b) The user provides an evaluation method as a callback. The framework itself can
then call this method whenever it requires the result to a specific test case. In this
case, the user only needs to interact with the framework to start the combinatorial
test. With the other variant, s/he may needs to provide test results multiple times
if s/he enables fault localization.

F6 Conditions for Fault Localization The system must only use fault localization if all
of the following conditions are fulfilled:

a) The user provides a fault localization algorithm via requirement F3.

b) At least one test in the initially generated test suite failed. If no test case failed,
fault localization would never find any failure-inducing combinations.

F7 Fault Localization Iterations After the user provides all needed test results, the
framework propagates them to the specified fault localization algorithm, which can then
generate further test cases. The test results needed for propagation are defined as follows:
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a) In the first iteration, the framework needs results for all test cases initially generated
by the generators from requirement F4.

b) In every following iteration it needs the results for all test cases generate by the
fault localization algorithm in the previous iteration.

F8 Fault Localization Stopping After the user provided fault localization algorithm
generates no more additional test cases, the framework must not require execution of
further test cases.

F9 Test Result Caching The framework must cache all test case results per combina-
torial test. Depending on the SUT, some test cases have a long execution time. That is
why the number of test cases which have to be executed should be as low as possible.
During fault localization, and due to multiple test case generators, duplicate test cases
can appear. In this case, the framework must not require the user to execute the same
test case again, but rather reuse the previously known result. The underlying assumption
of this requirement is that the same test cases always produce the same result. Otherwise
fault localization would not work reliably.

F10 Life Cycle Reporting The framework must notify the user of life cycle events for a
combinatorial test. Otherwise, the user would not know in what state the test is (initial
testing or fault localization). The framework must report the following events:

a) Generation of initial test cases via a generator the user provided (requirement F2).

b) Complete finished execution. This means that either the initially generated test
cases have all been executed if no fault localization is enabled (requirement F6), or
fault localization has finished (requirement F8).

c) The start of the fault localization process.

d) The generation of new test cases by the user provided fault localization algorithm.

e) The fault localization process has completely finished. This report must include
the failure-inducing combinations which the fault localization algorithm found.

f) The execution start for one specific test case.

g) The execution finish for one specific test case. This report must include the test
result.

All fault localization specific life cycle reports (c, d, e) must only occur when fault
localization is enabled (requirement F6). Additionally, all reports concerning the execution
of one test case (f, g) are only done once per test case regardless of how many times it
was generated, since the framework uses caching (requirement F9).
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F11 Event Reporting Additionally to life cycle reporting, the framework must provide
a general reporting interface which the generators and fault localization algorithm can use.
Through this interface users can collect additional information for execution statistics.

N1 Use of native Objects The user must be able to express the values for each
parameters with types from the underlying programming language. In a fully automated
environment, combinatorial tests could need any type of value as an input. If the user
only has the option to choose between a small, arbitrary, and framework-made selection
of types, s/he has to program the conversion logic her/himself. This would result in more
error-prone programming and duplicate code. For simplicity reasons, the framework must
be solely responsible for supplying all parameters in the right type.

N2 Performance-Independence from Object Sizes The general execution time and
performance of the whole framework can not depend on the size of the objects used
as values. For example, in Java the performance of equals and hashCode determine
the performance of a comparison between objects. Users of the framework must not
have to concern themselves with performance optimization in those methods. In a worst
case scenario this could lead to developers changing these methods in classes used in
production.

N3 Reuse Configuration While in general the user does all configuration only for one
specific combinatorial test, s/he should be able to reuse fault localization algorithm,
generator, and reporting settings across multiple combinatorial tests.

N4 Test Framework Agnostic A fault localization framework must not depend on a
specific testing framework. A violation of this requirement would be a direct violation of
Clean Architecture, where the framework should just be a detail.

4.1.4 Algorithm Developer Requirements

Now that last section explained all requirements for testers, there are still a few require-
ments left a fault localization framework must fulfill for use by algorithm developers.
These requirements focus on extendability.

N5 Developing Fault Localization Algorithms The framework must provide an in-
terface such that combinatorial test researchers can develop and use their own fault
localization algorithms. One must be able to achieve this goal by implementing just one
interface. The framework needs to provide all necessary information to the algorithm
through this interface. As it is not possible to predict what information future algorithms
need, the framework should at least support all current ones. This includes BEN, AIFL,
IterAIFL and IDD, as mentioned in section 3.2.
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N6 Developing Test Case Generators Additionally to fault localization algorithms,
developers must also have the option to write custom test case generators. For example,
generators for an IPOG generation and negative test cases as described in [FL18] must
be possible. Each generator only needs to implement one interface which provides the
generator with all necessary information. This includes the IPM, and a report mechanism
as requirement F11 described.

N7 Developing Reporters With the multitude of logging and reporting frameworks
which are available, some developers may need to write custom report adapters to
integrate the framework into their development environment. This means, that life cycle
(requirement F10) and event reporting (requirement F11) must include the capability to
write custom reporters. For example, in the Java programming language many developers
use SLF4J, so they could need a FrameworkReportingToSlf4JAdapter.

4.2 Architecture
Now that all requirements for a general fault localization automation framework have
been stated, this chapter describes the derived architecture. The architecture is generally
platform and programming language independent, so one could also implement it in
another language than Java. This section is structured as follows: First, an overview of
the very general architecture is given. The following sections all describe one part of the
architecture in greater detail.

4.2.1 Overview
This section describes the general architecture of the fault localization framework. This
includes the component based structure and general process information. Each archi-
tectural decision is documented and explained. The following subsections will cover
parts of the general architecture and mostly refer to Figure 4.1. This diagram depicts
all important framework components. Model/API is responsible for the communication
with the framework’s user; This user can also be another testing framework. The Gen-
erationManager is responsible for storing all test results and deciding when to call the
fault localization and generation algorithms.

Engine and Model Split

Maybe the most important design decision is the split between model and engine. Figure
4.1 marks each of the framework’s big parts. The engine includes basic reporting
capability and the business logic within the GenerationManager. On the other side we
find Model/API, some reporting based on said model, and a Conversion-component, last
of which is the main reason for this split into to parts.
While splitting an architecture into multiple parts is nothing out of the ordinary,

the place of this split is determined by the requirements. Specifically, non-functional
requirements N1 and N2. To recap: Developers must be able to define values in native
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Figure 4.1: Component diagram for the general framework architecture
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objects, but they must not negatively impact the execution speed. This results in the
need to convert all values into some other representation for which the system can manage
the performance independent of any actual values. It makes sense to have a real clean cut
along this line. The actual API which the user or test framework interacts with needs to
be able to accept objects as values and work with them. Generation management does
not need to know what actual objects are used. In the end, all test cases which the user
gives back to the framework need to be in object-form again. This means a continuous
conversion between objects and internally used types is necessary, so it makes sense to
outsource these task to a custom component — the Conversion-component.

As a result, the framework calls all fault localization algorithms and initial generators
with the internal representation types. This releases algorithm developers of the responsi-
bility to either convert all values themselves, or go with a decision to make no conversion
at all, which would hurt performance quite substantially.

Another advantage of the split is that, theoretically, one could develop different models,
each using the same engine. This means that while the standard implementation of the
framework could be via classes of types InputParameterModel, TestCase, etc., there
could also be another model which loads information from Xtext files.

On the other side, having a conversion mechanism for all test case introduces a slightly
increased difficulty in reporting. Since some reports contain actual domain model objects
like failure-inducing combinations (requirement F10), the conversion has to take place
here to. This is why a ModelBasedReporting-component is necessary. Its sole purpose is
to convert reports from the engine’s Reporting-component into formats which the user
can interpret. To achieve this, it uses the same Conversion-component as the normal
API.

Outside Extension/Interfaces

The general architecture has five points which connect to externally programmed com-
ponents. This thesis denotes them with the term extension point. Two of these offer
functionality to outside of the framework while the rest uses functionality provided by
external components.

Test Framework This interface in the top right corner of Figure 4.1 provides the com-
plete usage API. Users or other testing frameworks can use it to start the framework
for a specific combinatorial test, and provide configuration information like the Input-
ParameterModel and fault localization algorithm. Therefore, it fulfills requirements F1,
F2, and F3. Additionally, the framework uses it to accept test results for all test cases
generated in the GenerationManager. Since the test framework becomes a detail outside
of our own framework, this therefore also satisfies requirement N4.

Generator To use any fault localization, first, some combinatorial test cases need
to be generated (requirement F4). This is done via the Generator-component. The
framework can use an arbitrary number of generators, which all need to have the same
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interface. What can not be seen in Figure 4.1 is that this interface needs to be in the
GenerationManager-component. This is done to adhere to Clean Architecture defined
by Robert C. Martin [Mar17]. Therefore, implementations should use the Dependency
Inversion Principle (section 2.2.1). Instead of the framework depending on a concrete
generator, it should instead depend on a generalization or interface [Fow]. As a result,
both the concrete generator and the framework depend on the interface. When it is now
located inside the framework, this means that the framework does not directly depend
on any externally programmed component. The concrete generator becomes a detail
[Mar17].
Since all generator now implement the same interface, they are interchangeable.

Through the right configuration, developers can now program new generation algo-
rithms and use them in the framework (requirement N6). This demonstrates the Linkov
Substitution Principle.

Localization Algorithm One of the most important parts of the framework is the
connection to a fault localization algorithm. This connection is modeled at the bottom
in the middle in Figure 4.1. Through this interface, the framework passes all information
needed for fault localization to an concrete algorithm (requirements F7, F8, and N7).
Since the framework should not depend on an actual implementation (requirements F3
and N5), implementations should again use the Dependency Inversion Principle as with
the Generator.

Event Reports Requirement F11 introduced the need for event reporting. As Figure
4.1 shows, this is done using an interface which components outside of the framework
can call. Only the fault localization and generation algorithm need to call this interface.
It should support simple reports in the internal engine representation format.

Reporter If a developer wants to implement a custom reporter, s/he can do so through
the reporter interface. Figure 4.1 contains it at the top left corner. The framework
calls the registered reporters through an interface, as implementations should use the
Dependency Inversion- and Linkov Substitution Principle. The ModelBasedReporting-
component converts all life cycle- and event reports and then propagates them to the
registered reporters.

General Process

All requirements together define a very clear process which the framework has to follow
in order to achieve working fault localization. Figure 4.2 depicts it as an EPC diagram.
The gray boxes represent life cycle reports, while the blue ones represent a test result
cache. This section will put the process in context of the general architecture and it’s
components (Figure 4.1). As a consequence, the responsibilities of all components will
also become clearer. The process can be divided into three phases.
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Figure 4.2: EPC diagram for the framework
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1. First, the framework executes traditional automated combinatorial testing. This
means, that a number of generators provide test cases. For normal combinatorial
testing, an IPOG algorithm can generate a t-way combinatorial test suite for
the user provided IPM. On the other hand, test cases for more complex testing
procedures, such as negative CT, are also possible. This phase needs all components
except the LocalizationAlgorithm. First, a testing framework or any other user
starts the whole process and provides an IPM. The Conversion-component then
converts this IPM to an engine-processable format. After the API passes it to the
GenerationManager, all configured generators provide their created test cases in
the internal representation format. Since the user cannot know this format, the
Conversion-component converts all test cases again, and the API passes them to the
user/testing framework. Additionally, the manager publishes a report describing
the initial generation through the Reporting- and ModelBasedReporting-component
to any registered reporter. Finally, the Conversion-component converts all test
results — provided by the user — and passes them down to the GenerationManager,
which now caches them and evaluates all criteria defined in requirement F6.

2. If those criteria are fulfilled, the fault localization phase begins. Figure 4.2 shows
this phase on the right side. The framework adopts an iterative approach, and in
each iteration it executes the same steps. First, the GenerationManager passes
all test results and the IPM to the LocalizationAlgorithm. This algorithm now
decides, through some internal mechanism, whether to generate further test cases
for evaluation or no test cases. In the latter case, fault localization stops and
the manager reports all failure inducing combinations. Otherwise, the framework
repeats the process from step 1, and the user gives all relevant test results. This is
repeated until the stopping condition is met.

3. If not all conditions for fault localization are fulfilled or fault localization is finished,
the final phase creates a report to let all reporters know that the framework will
evaluate no more test cases. This ends the test.

4.2.2 Domain Model

Requirement F1 already defines a big part of the domain model, which Figure 4.3 shows
as an UML class diagram. Those classes each describe the external representation which
the user, or other testing frameworks, can access. The internal representation cannot be
derived from any requirement, and developers wishing to implement an automated fault
localization framework should choose one on their own.

The central entity of the domain model is the InputParameterModel as section 2.1.5
described. It contains all information necessary to start the generation of a combinatorial
test. This includes a name or other identification by which the user can recognize
different IPMs, the strength with which generators should generate test cases, parameters
describing the SUT, and constraints on the values of these parameters. An IPM needs to
contain at least one parameter, otherwise test case generation does not make any sense.
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Figure 4.3: Class diagram of the domain model

Constraints, however, are not required. While it may be rare in practice, some systems
could also be totally unconstrained on their input space.
A constraint is modeled in such a way that it takes values for a number of defined

parameters and then evaluates whether the given value-combination satisfies the con-
straint. This general interface means that developers can employ any type of constraint
representation literature proposes. A function returning false when a test case contains
one specific sub-combination, and true otherwise, represents an invalid combination con-
straint. At the same time, the ConstraintFunction can hide more complex functions.
This one can easily represent logical expressions and evaluate them lazily just when the
framework needs them for constraint solving. The concrete interface of a constraint
function can be different in the actual implementation.

Parameters, like the IPM, also have a name to help identification by the user. This is
especially important during reporting, as the user may not always know which parameter
is meant when presented with some value, and often, multiple parameters have the same
values (for example boolean parameters). Thus the user needs a unique identification
mechanism. Consequently no two parameters can have the same name in one IPM. The
values themselves do not need to store any other information than the actual object (as
of requirement N1). This could result in the misconception that the framework does
not need a Value class, but especially in programming languages which allow null,
encapsulation provides a differentiation between a missing values, and an explicit null
value. Additionally, there are some combinatorial testing features which assign attributes
to values. Future developers could easily add them to the Value class. For example, the
framework could give users the option to define value weights to control how often values
appear in test cases.

A test case itself is only a combination of values where each parameter has one assigned
value. This means, that the framework does not need to differentiate between those
two types. As a consequence, the domain model only contains the Combination type,
but an actual implementation of the framework could always add an additional class for
representing “complete” combinations (test cases).
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4.2.3 Reporting

Figure 4.4: Component diagram of report conversion

One very interesting area of the architecture is reporting. Since the framework needs a
split between engine and model as described in section 4.2.1, reporters have to convert
between internal and external representation types. This introduces an added complexity
into an otherwise straightforward part of the application.

This conversion for life cycle reporting, as requirement F10 defined, is not difficult. A
component handling the management of all registered external reporters just uses the
Conversion-component to create a representation of all propagated information which
the external reporter can understand/parse. Where this gets much more difficult is in
event reporting (requirement F11). This type of reporting passes some notable events,
like debug information, or any other messages which could be interesting for users, but is
not considered in life cycle reporting. In particular, life cycle reporting can not pass on
any information which is algorithm specific and thus the framework needs to establish
other means of communication.

Some of this information only consists of text. In this case the algorithm just needs to
pass a simple string like "debug information" to the user. This is not complex, as a
the framework can easily provide such an API. Other information like "(OS=Windows,
ping=10)is a failure-inducing combination with 45% probability" is more
difficult to pass in a readable way. Since the algorithm only knows the internal repre-
sentation, one can not be sure, that it knows how to translate it into a readable format.
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And even if it did know this, what if a reporter needs the report’s actual objects for some
operation? All of this leads to the conclusion that the framework needs some mechanism
for converting the internal representation to an external representation. This reporting
mechanism should allow reports to pass all actual objects from the algorithm, but still
employ conversion to external representation types.
Figure 4.4 shows the architecture’s solution. Since there are many domain objects

which the framework needs to convert (see section 4.2.2), this figure contains only the
general case for some entity called X. It has an internal and external representation.
The Algorithm now wants to pass a Report, which contains an InternalX to the user
provided Reporter. How the report is structured internally is not important for this to
work, it only has to provide some support for passing objects and converting them.

Now, the general process is that the algorithm provides a report which contains
some InteralX to its EventReporter. The implementation behind this interface is
actually the ReporterConverter. This converter now receives a Report, and begins the
conversion process. To this end, it has several registered Converter implementations,
one for each entity which needs conversion. These converters can use any part of the
ModelConverter to change an internal to its external representation. For each object
passed along inside a Report, the ReporterConverter checks all converters for whether
they can convert the type. If that is the case for one of them, in replaces the object.
After it replaced all objects, it passes the Report on to the user provided Reporter,
now in an converted format.

This solution has several advantages. Since users can dynamically register converters,
algorithms can directly use custom internal representations in their reports and just
need to provide a Converter which creates an external representation. Additionally, the
architecture is also robust against changes in the domain model. Developers only need
to adjust the converters of changed entities; all others can be used as normal (Single
Responsibility Principal).
Furthermore, this solution preserves Clean Architecture principles. All arrows in the

simplified class diagram of Figure 4.4 point inwards, to classes within engine. As a result,
the Reporter and Algorithm become details, and programmers can quickly change
them without effecting any class in model and engine. Additionally, developers can
change external representations without adjusting any part of the engine. Even if Report
needs to know about Converter, it does not need to know concrete implementations.

All of this is again achieved through the Dependency Inversion Principle. At any point
where arrows for the process would normally point away from a class in engine or model,
the architecture introduces an interface, effectively hiding the real implementation (see
ModelBasedReporter, EventReporter, Converter, and ModelConverter).
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Now that the last chapters explained the general concept and architecture of a fault
localization framework, this chapter focuses on CombTest, the actual Java implementation
of said framework. One can consider this to be a proof of concept. First, all general
information about how the architecture was transformed into code is presented in section
5.1. Next, section 5.2 describes important extension points and how users can write their
own fault localization or generators. Finally, section 5.3 demonstrates how testers can
use CombTest’s API to write their own combinatorial tests.

5.1 Overview

To understand how CombTest realizes all extension points and how developers can use
them, this chapter first explains CombTest’s general structure. Section 5.1.1 will describe
the general structure of the code and how Maven is used to manage it. Earlier in the
thesis, the idea of a split between an engine and model component was introduced.
Section 5.1.2 explains its realization and challenges faced during development. Lastly,
Section 5.1.3 describes the general concept of a test case group.

5.1.1 Maven Structure

The CombTest-framework is structured as a Maven multi-module project. This basically
means that there is one parent project containing multiple child modules, each only
dealing with one part of the application. The parent project defines information important
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Figure 5.1: Component diagram of the Maven structure

to all child modules. For example, In CombTest’s case this means it manages all versions
for dependencies like JUnit and fastutil.

Figure 5.1 shows the general structure of CombTest. combtest-aggregate is the parent-
project from which all modules inherit common information. In total, there are three
chile modules. combtest-engine and combtest-model are direct mappings from the big
architecture parts model and engine. The JUnit extension resides in a third component. As
a result, developers only need combtest-junit-jupiter if they want to program combinatorial
JUnit tests. The advantage of different modules is a stricter enforcement of separation
of concerns. When a developer wants to add a part to the framework, s/he has to ask
him/herself in which module it fits best, or if a change requires adjustment of multiple
modules.

Dotted arrows in the figure all show direct dependencies through the maven dependency
management functionality. At all points where classes in engine would normally depend
on classes in model, CombTest uses the Dependency Inversion Principle to flip the
dependency around. As a result, there is a clear hierarchical dependency structure,
conforming to the standards of Clean Architecture [Mar17]. Since Maven does not
allow cyclic dependencies between modules, it enforces correct implementation of said
standards.

5.1.2 Engine and Model Split

Section 4.2.1 raised the need for a split of representation types between the framework’s
engine and model parts. For a brief recapitulation: The requirements state that users
can enter any native object as a value, but the performance should not depend on object
sizes. In Java this means the performance of equals and hashCode should not impact
the framework’s performance. Consequently, an internal representation type is needed
for all modeling aspects.

In CombTest, all internal representation types revolve around primitive types like int
and double. A values is therefore simply denoted by its index in the corresponding
parameter. For example, in the OS parameter from Table 2.1, “0” represents Windows
and “3” is Android. To pass a parameter to another method, it is therefore sufficient just
to pass one integer showing the parameter’s size. Now the method has all information
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needed to perform combinatorial calculations. When not considering constraints, the
IPM is only the testing strength and definition of all parameters. As a result, CombTest’s
engine module can represent it as an int for the strength, and an int[] for parameter
sizes. The convention is that the parameters are just indexed from zero to n − 1.
int[] parameters = 5, 4, 3, 4 therefore represents Table 2.1. Test cases are just
the assignment of values to parameters in an int[]. For example, int[] testCase

= [-1, 2, 0, -1] is equivalent to (—, Firefox, 10 ms, —). The number minus one
denotes that the respective parameters is not set to any value.

Having primitive internal representation types has many advantages. The implementa-
tion does not depend on actual value object sizes, and creation of values, and especially
comparison, is computationally very cheap. In combinatorial test generation one of the
main bottlenecks for performance seems to be the speed with which values are created
and how fast we can compare test cases or check if a values has already been set. Using
primitive types solves both problems. In an earlier version of CombTest, engine directly
used the types given in the model. Even when using just boxed integers, the performance
was noticeable better if CombTest converted the model. Of course, this manual checking
was not a representative study, but with growing object sizes and complexity there has
to be some point where the fixed cost of conversion will be outgrown by multiple calls to
slow equals implementations during computationally expensive test case generations.
Of course, there are also some disadvantages. Normal objects are nearly always

better when writing code, or trying to understand it. Since they have descriptive
names and one can write functions in classes, code just looks much more fluent. With
primitive types, the writer and reader have to know all conventions as to not make
any mistakes. Additionally, some design decisions of the Java programming language
itself lead to difficulty. Since generics only allow complex types, developers have to use
auto-boxing for primitives. Therefore CombTest uses fastutil, a library consisting of
primitive type implementations for the Java Collections API [Vig14]. Another problem
is the implementation of arrays in Java. Currently they do not support any sensible
equals and hashCode implementation. Instead, they employ the default implementation
which uses the object’s storage location. Therefore, comparison between two exact
copies is not possible. As a result, it is very difficult to use arrays in collections.
To mitigate this problem, CombTest uses a class called IntArrayWrapper, which is
just a wrapper class and uses Arrays.equals(int[] first, int[] second) and
Arrays.hashCode(int[] array) for a correct comparison.

Some of these problems will be avoidable in the future. Since Java is currently working
to support primitive types in collections and the creation of data classes, there is hope
that one day CombTest will not have to use primitive types at all, and still have a high
performance [Goe14].

5.1.3 Test Case Groups
One specific focus of the implementation (not the architecture in general!) was the
support for negative testing as [FL18] describes it. To recapitulate: This type of negative
testing works by negating error constraints one by one and generating a new suite of test
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Figure 5.2: Class diagram for TestCaseGroup

Figure 5.3: Class diagram for TestCaseGroupGenerator

cases for each negated constraint. For constraint aware fault localization, this leads to
the problem of which constraints to use. Additionally, masking effects can occur if fault
localization does not differentiate between positive and negative testing.

All of these arguments lead to the design decision of a layer between combinatorial tests
and individual test cases. The main component of this layer is called a TestCaseGroup.
One combinatorial test can have multiple TestCaseGroups, and each group consists of
an arbitrary number of test cases. Fault Localization is done per group. This means
CombTest fulfills requirements F6, F7, F8, and F10 per group, and not for all test cases
together. Theoretically, one could emulate a framework without TestCaseGroups by
just adding a collective generator which puts all groups from multiple generators into
one test case group.

Having TestCaseGroups leads to the problem that a group specific fault localization
algorithm needs to know which constraints to consider and which parameters to use.
Therefore, CombTest introduces a FaultLocalizationConfiguration. It is part of a
TestCaseGroup and specifies all important information for fault localization algorithms.
Consequently, a it includes a constraints checker, IPM, and a reporter (see Figure 5.2).

5.2 Extension Points

After last section explained all basics about how the fault localization framework is
realized, this section will go more into detail about four important extension points. For
all other extension points, please consult the documentation of CombTest.
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5.2.1 TestCaseGroupGenerator

TestCaseGroupGenerator is the realization of the generator in form of an interface.
As Figure 5.3 shows, it only needs one method. The sole responsibility of a generator
is to provide an arbitrary number of TestCaseGroups. The possibility to create mul-
tiple TestCaseGroups per generator also rooted from the desire to support negative
testing. Since the number of groups depends on how many error constraints the user
specified, it would be very difficult to give exactly one generator per constraint. Basic
combinatorial testing algorithms like IPOG can still use the interface and just return one
TestCaseGroup.

The use of Java Suppliers is an important design decision, too. Generators now do
not need to invoke group generation themselves, but rather pass this responsibility to
the framework. Consequently, optimizations are possible in CombTest. For example, it
would be relatively easy to introduce parallel creation of TestCaseGroups. Therefore,
generator developers do not have to deal with parallelization themselves and can focus
on real generation aspects.
Generators cannot generate groups without knowing some basic information about

the combinatorial test. Therefore, CombTest provides the internal representation of an
IPM, called CombinatorialTestModel. It includes all information necessary to generate
groups for test cases.
As a proof of concept, CombTest provides multiple sample generators. The most

important one is certainly a full implementation of the IPOG algorithm. It generates just
one TestCaseGroup which contains test cases covering each possible value-combination of
size t. The algorithm was implemented according to a several performance improvements
and implementation advice by Kleine et al. [Sim18]. CombTest makes some modifications
to the original IPOG to allow constraint handling in IPOG. Additionally, Konrad Fögen
provided an implementation of his negative testing algorithms [FL18].

5.2.2 FaultLocalizationAlgorithm

As Figure 5.4 shows in the top left corner, CombTest’s interface for fault localization is very
near to the requirement’s definition. To allow for an algorithm to decide whether it needs
further test results for finding failure-inducing combinations, computeNextTestCases
takes all requested test results and returns a list of new test cases (requirement F7).
When an algorithm requires no further test results, it can calculate all failure inducing
combinations in computeFailureInducingCombinations. Most algorithms like AIFL
and Improved Delta-Debugging already accomplish this step during the generation of
further test cases, so for them it is only an access method for an internal list of failure-
inducing combinations. Probability-based algorithms such as BEN can benefit from the
return type of computeFailureInducingCombinations. Since they have in internal
ranking of which combinations are most likely to be failure-inducing, they can convey
such information to the user via an ordered list.
During the implementation of Ben, Aifl and IterAifl a shared general structure

became apparent. Each of these algorithms keeps an internal list of suspicious com-
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Figure 5.4: Class diagram for FaultLocalizationAlgorithm

binations and computes further test cases only if a specific criterion is fulfilled. They
build a list of suspicious combinations by only using some sub-combinations in each
failed test case and removing those sub-combinations appearing in successful test-cases.
SuspiciuosCombinationAlgorithm handles the management of suspicious combina-
tions according to some details a concrete algorithm provides through abstract methods.
Only ImprovedDeltaDebugging did not share this structure as it checks failed test cases
one at a time to find failure-inducing combinations.

Since section 5.1.3 defined that CombTest needs to execute fault localization for each
TestCaseGroup individually per combinatorial test, it needs multiple instances of one
FaultLocalizationAlgorithm. This is why the user has to specify the algorithm with
a FaultLocalizationAlgorithmFactory, which provides a new algorithm per group.

5.2.3 Reporter

CombTest brings requirements F10 and F11 together into one single interface as shown
in Figure 5.5. Each life cycle event has a corresponding method which conveys needed
information. To distinguish between groups, CombTest passes a TestCaseGroupContext
to all methods which it executes per group. Events about the execution of one single test
case do not contain a context, as CombTest employs caching and may therefore use a
test execution result for other groups.

Additionally, two methods deal with event reporting. A reporter may provide a severity
level with getReportLevel(). As a result, CombTest only passes reports with higher,
or equal severity to the report method. report itself uses the report with resolved
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Figure 5.5: Class diagram for ExecutionReporter

Figure 5.6: Class diagram for ArgumentConverter

arguments (section 4.2.3).
PrintStreamExecutionReporter is a sample implementation printing out all events

to console in a simple format.

5.2.4 Argument Converter

Section 4.2.3 introduced the idea of argument converters to transform internal to external
representations. CombTest not only uses this mechanism for reporting, but also for iden-
tifiers in TestCaseGroups. The idea is that for negative testing, the negated constraint
should be the identifier of its corresponding group. Since TestCaseGroupContexts use
identifiers for reporting, one would need a conversion to an external constraint represen-
tation. Since argument converters are already implemented for reporting, the framework
can just reuse them.

The general interface of an ArgumentConverter is not very complex. There are just
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two methods, one specifying whether it can convert a given object, and another one for
actually converting said object. The interface’s contract specifies that CombTest only
calls convert(Object argument) if canConvert(Object argument) returns true.
As a result, the former method does not have to deal with checking the argument’s type,
and developers can avoid much duplicate code.
To successfully convert internal representations, each ArgumentConverter needs

to know about the conversion method used. Therefore, it needs a ModelConverter,
which can convert parameters, values, constraints, and complete IPMs. Since most
converters need this, CombTest provides ModelBasedArgumentConverter, an abstract
class which takes care of initializing and handling the ModelConverter. CombTest
provides an implementation of ModelBasedArgumentConverter for values, parameters,
combinations, and constraints.

5.3 Usage
More important than how to write extensions for CombTest is how developers can use it
to write combinatorial tests. There are two ways to do that. Option one is to directly
use the framework’s API for configuration and execution. This method has some slight
disadvantages. CombTest is no full testing framework in the sense that it does not
incorporate a test discovery mechanism. Consequently, developers would have to write a
Main.java class which configures all test CombTest should execute. The second option is
using the framework’s JUnit5 extension. It fully incorporates CombTest into the popular
testing framework, and makes all familiar features of parameterized tests available. This
is mostly due to the fact that the extension was just written as a proof of concept, and
therefore copies large code and design portions of junit-jupiter-params. The next
two sections present usage examples of both APIs. First, the lower-level CombTest
API is explained in section 5.3.1. Next, section 5.3.2 shows how to natively integrate
combinatorial tests into JUnit5.

5.3.1 Framework

Using CombTest’s API for test execution requires three arguments: A configuration, a
test method, and an IPM. Since all of these arguments contain some optional settings,
the builder pattern is used extensively [Gam+95]. The following lines show an example
test, which first configures all required parameters, and then executes it with a function
containing a build-in flaw at a specific sub-combination.
1 public class FrameworkUsage {
2 public static void main(String[] args) {
3 new CombinatorialTestExecutionManager(
4 consumerManagerConfiguration()
5 .executionReporter(new PrintStreamExecutionReporter())
6 .generator(new IpogTestCaseGroupGenerator())
7 .localizationAlgorithmFactory(ben())
8 .build(),
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9 FrameworkUsage::testFunction,
10 inputParameterModel("exampleTest")
11 .strength(2)
12 .parameters(
13 parameter("param1").values(0, 1, 2),
14 parameter("param2").values("0", "1", "2"),
15 parameter("param3").values(0.0f, 1.1f, 2.2f),
16 parameter("param4").values(true, false))
17 .forbiddenConstraint(constrain("param1", "param3")
18 .by((Integer firstValue, Float thirdValue) ->
19 !(firstValue == 0 && thirdValue == 1.1f)))
20 .build())
21 .execute();
22 }
23
24 private static void testFunction(Combination testCase) {
25 final int firstValue =
26 (Integer) testCase.getValue("param1").get();
27 final String secondValue =
28 (String) testCase.getValue("param2").get();
29 assertFalse(firstValue == 1 && "1".equals(secondValue));
30 }
31 }

Source Code 5.1: FrameworkUsage.java

The example will first run a normal IPOG algorithm to generate an initial set of test
cases for the given input parameter model "exampleTest". None of these test cases will
contain (0, —, 1.1f, —). Next, the execution manager runs all these test cases by passing
the respective combination to testFunction, which throws exceptions on (0, "1", —,
—). Since the test configures a fault localization algorithm factory, CombTest passes all
test result to the BEN algorithm, and further tests narrow in on the failure-inducing
combination. The PrintStreamExecutionReporter will print out all steps to the
console.
FrameworkUsage.java does not show all possible configuration options. It is gen-

erally possible to directly specify a low level executor. The default one uses caching
and the process described in sections 4.2.1 and 5.1.3. Additionally, users can customize
the mapping between internal and external representation types by providing a cus-
tom ModelConverterFactory. Finally, they can configure an arbitrary number of
TestCaseGroupGenerator, ExecutionReporter, and ArgumentConverter.

5.3.2 JUnit5 Extension
CombTest’s JUnit5 extension has some more sensible default values. As a results, the
barriers of entry are slightly lower, and a minimal example works with just configuring an
IPM. Most configurations in combtest-junit-jupiter are done through annotations
like in junit-jupiter-params. For example, configuring a generator means adding
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the @Generator(IpogTestCaseGroupGenerator.class) annotation to a test. The
example from section 5.3.1 now looks like this:
1 class JunitUsage {
2 @CombinatorialTest
3 @LocalizationAlgorithm(Ben.class)
4 @Reporter(PrintStreamExecutionReporter.class)
5 @ModelFromMethod("model")
6 void combinatorialTest(int param1, String param2, float param3,

boolean param4) {
7 assertFalse(param1 == 1 && "1".equals(param2));
8 }
9

10 private static InputParameterModel.Builder model() {
11 return inputParameterModel("exampleTest")
12 .strength(2)
13 .parameters(
14 parameter("param1").values(0, 1, 2),
15 parameter("param2").values("0", "1", "2"),
16 parameter("param3").values(0.0f, 1.1f, 2.2f),
17 parameter("param4").values(true, false))
18 .forbiddenConstraint(constrain("param1", "param3")
19 .by((Integer firstValue, Float thirdValue) ->
20 !(firstValue == 0 && thirdValue == 1.1f)));
21 }
22 }

Source Code 5.2: JunitUsage.java

As we can see, this example has nine fewer lines of code. Additionally it is easy
to execute, as most modern Java IDEs will pick up JUnit tests and allow direct ex-
ecution through a dedicated GUI. One advantage of the extension is the use of JU-
nit’s ParameterResolver. Now, the user does not have to extract all values from a
Combination object, but can instead expect them as parameters for a test method.
They will also work with the ArgumentsAggregator and ArgumentConverter features
of junit-jupiter-params.
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Having an implementation of the general architecture is a very important step. What is
still missing though, is an evaluation of CombTest. It would be of no use if CombTest
did not satisfy all requirements presented in section 4.1, or if the source code was so
untested, that nobody would want to use it. This chapter deals with such questions.

6.1 Requirements

Perhaps the most important question which one can ask about any software is: Does it
fulfill all requirements? If a product is very nice to use and has a good code structure,
the development process still failed if it is completely different from the original request.
Therefore, there is another module in CombTest called combtest-evaluation which has a
package called requirements. This package contains so called acceptance tests for each
requirement, to verify all functionality works as intended [HH08]. Additionally, these
tests represent a way of learning how to use CombTest’s API.
JUnit tests cannot easily cover all non-functional requirements. Therefore, the next

few paragraphs verify these arguments with a more argumentative approach.

N2 Performance-Independence from Object Sizes Requirement N1 specified that test
developers can use native objects as values in IPMs. To shield users from having to
develop faster equals and hashCode versions, requirement N2 demanded performance-
independence from these methods. To test whether CombTest achieves this, a small
experiment has been setup.

In class RequirementN2Test there are two separate test cases. One of them contains a
model consisting only of int values, the other instead has instances of SlowClass. This
class was specifically programmed for the performance test, and has deliberately slow
implementations of equals and hashCode due to explicit waits. When each test method
now measures the time for its execution, the one using SlowClass would be much slower
if the framework ever uses any of its methods. To guarantee a fair comparison, both IPMs
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Figure 6.1: Comparison of CombTest execution times between Java primitive types (int)
and a custom slow type over 200 iterations. For int, median, average, and
standard deviation were 9970 ms, 9974.48 ms, and 131.493507 ms (in that
order). For SlowClass they were 10033 ms, 10037.065 ms, and 121.669504
ms.

are equal except in the type of their values. Both have two constraints targeting the
exact same combinations. Additionally, they test the parameters with the same strength.

The general setup is an initial generation of a test suite covering all 3-value-combinations
using IPOG. An introduced fault in the tests’ execution methods forces CombTest to use
BEN for fault localization. This guarantees that the tests use all parts of the framework.
If the execution of a program on any computer were completely deterministic, this

would be enough to check execution times. However, concurrently running background
processes and garbage collection by the Java environment destroy this illusion. Every
run, even on the exact same computer, will always be slightly different. To mitigate
these factors to the tests’ validity, each combinatorial test is executed multiple times (in
our case 200). Calculating an median value will then show any differences in execution
times. Figure 6.1 shows the duration of every iteration and the text below it states
median, average, and standard deviation. Since the SlowClass variant is not more than
five seconds slower, we can safely assume that equals and hashcode were never called;
CombTest fulfills requirement N2.
All tests were executed on a Windows 10 computer running with JDK 1.8.0 update

181 using IntelliJ IDEA ULTIMATE 2018.2.2. These programs ran on an AMD FX-6100
running at 3.30 GHz supported by 16 GB of DDR3 RAM.

N4 Test Framework Agnostic There is no test case which can show CombTest’s test
framework agnosticism, so instead an argumentative approach is needed. Since there are
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no JUnit imports in engine or model, there is at least no direct dependency. Nevertheless,
CombTest could indirectly depend on a test framework; for example, if its architecture
was build in such a way that only one specific testing framework could actually use it.
However, while JUnit5 was the intended target framework since the beginning, CombTest
construction happened before the JUnit extension and as such JUnit5 did not influence
any architectural decision.

N5-N7 Developing Custom Implementations of Algorithms and Reporters Require-
ments N5 through N7 deal with the development of fault localization algorithms, gen-
erators, and reporters by third parties. Section 5.2 presented multiple example imple-
mentations. As such it is clear that other developers can add to CombTest through
these extension points. Additionally, section 4.2.3 introduced ArgumentConverters.
While the requirements did not include them, they are also extendable through custom
implementations.
Requirement N5 specifically stated that CombTest should support all current fault

localization algorithms. Proving this requirement by actually implementing all algorithms
would take too much time, so instead CombTest contains four representative algorithms
(AIFL, IterAIFL, Improved Delta Debugging and BEN). Each of them employs a slightly
different method of finding failure-inducing combinations, but all of them fit inside the
interface defined by section 5.2.2. Additionally, while non-adaptive fault localizations
were not a focus of this thesis, developers could also implement such algorithms by
writing a different generator working in conjunction with a specialized fault localization
algorithm.

Since requirement N7 was the last one, we can therefore say that CombTest fulfills all
requirements according to their specification.

6.2 Quality

There are many ways to measure a software’s overall quality. Miguel et al. mention
over 18 software quality models between 1977 and 2013 alone [MMR14]. Section 6.2.1
will analyze CombTest according to the famous ISO/IEC 25010:2011 standard [Sta11].
During development itself, programmers often do not continuously evaluate their code
with such standards, but instead use static code analysis tools like SonarQube. Therefore,
section 6.2.2 discusses SonarQube’s evaluation of CombTest.

6.2.1 ISO/IEC 25010

Like most software quality models, ISO/IEC 25010:2011 defines several characteristics
according to which one should evaluate a software product [MMR14]. In this case there
are eight characteristics as Figure 6.2 depicts. Each characteristic defines a number
of sub-characteristics whose assessment accumulates to an evaluation of the respective
top-level characteristic. For example, Reliability includes Modularity, Reusability, and
several other sub-characteristics. This section will directly evaluate CombTest according
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Figure 6.2: ISO/IEC 25010:2011 characteristics

to all top-level characteristics, as evaluating sub-characteristics would simply not fit into
the limit of this thesis.

Functional Suitability Section 6.1 already showed that all CombTest fulfills all require-
mentsd. Additionally, it also fulfills implicitly stated needs, such as the support for
negative combinatorial testing. In section 6.3 one will also see that automated fault
localization works in general.

On the other side however, there are also some features which fault localization could
need in the future which are not possible with the current version of CombTest. One
could image, that an even more adaptive form of fault localization is possible, where on
algorithm covers all t-value-combinations and localizes faults at the same time. It could
then directly construct test cases based on previous results. Such a process is currently
not possible with the framework, as only the FaultLocalizationAlgorithm interface
offers dynamic test generation functionality. At the same time, CombTest can only call
classes implementing this interface when there was at least one fault in an initial test
suite. Consequently, it is not possible to generate additional dynamic test cases after
one successful initial test. However, since CombTest’s core generation manager is very
adaptable and hidden behind an interface, it would be possible to simply switch it out
for one which could handle the described scenarios.

Performance Efficiency Since generating even a near-minimal combinatorial test suite
is a very hard and time-consuming problem, CombTest should not introduce an additional
significant performance decline. This inefficiency in test suite generation was one of the
main arguments for introducing a split between model and engine. Converting every
generated test case one at a time to present the external format to the user is of linear
complexity for a constant number n of parameters. However, test suite generation is
never linear, so it makes sense to speed up this important part of the framework through
the use of only primitive types. What all of this means is, that it would not have been
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hard to make CombTest a little bit faster by not implementing a model engine split, but
this performance hit was deliberately taken to increase generator execution speed.
To evaluate CombTest’s performance, a small experiment was conducted similarly

to the one in paragraph 6.1. However, instead of measuring the complete execution
time, only the time inside CombTest counts. Therefore,the experiment uses wrapper
classes around generation and localization algorithms which stopp the time measuring
process. The input parameter model consists of eight parameters (eight values each), no
constraints, and a testing strength of three. The test executor is configured to throw
exceptions at exactly one specific three-value-combination, thus simulating a failure-
inducing combination. All in all, IPOG generates 1050 test cases, with BEN using an
additional 20 test cases to fully locate the fault.
de.rwth.swc.combtest.experiements.PerformanceTest contains all performance

tests. When executing, it prints out the execution time to console in nanoseconds. 200
measurements result in a median of 10.377 ms, average of 10.498 ms, and standard
deviation of 0.641 ms. Since normal execution time for the IPOG algorithm is measured
in seconds, not milliseconds, these times are plenty small enough for a framework like
CombTest.

Compatibility Since CombTest uses a Clean Architecture, and therefore does not directly
depend on any testing framework, developers could write extensions for every framework
they want to use it in. The only requirement is that test cases can be dynamically
generated based on previous results. For example, CombTest is compatible with JUnit4
as one could write a Runner which executes CombTest.
There is one small incompatibility which needs to be taken into consideration. In

version 5.3 JUnit5 introduced the concept of parallel test execution. Due to the way
concrete code, fault localization with CombTest’s JUnit5 extension is not compatible
with parallel execution. However, later versions of the JUnit5 extension could fix this.

Usability Evaluating the usability for a given software product nearly always involves
users testing features or just using the product in production. Since this is just not
possible due to time constraints placed on a bachelor thesis, there was no way to conduct
any empirical study. Consequently any usability evaluation is a completely subjective,
and most certainly influenced by the fact that I wrote CombTest.

Since CombTest uses the popular Maven framework, there is an easy and established
way to use it in production. As Maven has a very high market share, and gradle uses
the m2 dependency model, too, nearly every Java developer will have a way to install
CombTest. Additionally, the JUnit5 extension will help for an easy adoption, since it is
very near to parameterized test. While JUnit5 is relatively new, and some developers
may not have switched from JUnit4, writing basic tests is relatively similar to JUnit4
tests, so writing combinatorial tests should not introduce to much of a hurdle.
Once a developer learns all basics of CombTest, writing combinatorial tests is not

particularly more time consuming than writing regular test cases. The main complexity
lies in developing an input parameter model and a functioning test oracle. Both of these
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tasks reside outside of the CombTest framework and thus do not influence the usability.
Due to the extensive reporting possible with CombTest, users should also be able to

locate any errors they make early on. All in all, this means using CombTest should be
no more difficult than using any other Java testing framework.

Reliability Since CombTest could not be tested in production, not much can be said
about its reliability. Additionally, large parts of the complexity reside in specific algorithm
implementations. Those are supplied by third party developers, and thus cannot be
evaluated for reliability.
To mitigate the risk of having a framework which always fails, there are many unit

tests in addition to the acceptance tests introduced in section 6.1. Tests are of course
never a proof of working software, but they increase the confidence that CombTest is
reliable.
One part which could be improved is error handling around extension points. For

example, if an external TestCaseGroupGenerator was not written very well, one would
not expect the whole framework to fail.

Security Security was not a concern during the development of CombTest, since the
framework should only be used in isolated testing environments, and never in production
systems.

Maintainability An important concern in a software product’s longevity is its main-
tainability. If no one can fix bugs or introduce new functionality, developers will move
away from the framework. CombTest’s maintainability is held high mainly through a
good modularity concept. Since engine, model, and the JUnit extension are in different
Maven modules which have a clear dependency structure Figure 5.1 shows, changing
details like the extension is easily possible without affecting core functionality in engine.
Additionally, nearly all classes form a DAG in their dependency structure. This also
eases maintainability.
Countless JUnit5 test cases proof the testability of CombTest, but there is room for

improvement. Particularly the managing classes like BasicCombinatorialTestManager
have too many dependencies which introduce a significant overhead in testing.

Portability Lastly, ISO/IEC 25010:2011 considers portability. Paragraph 6.2.1 already
evaluated some sub-characteristics of this category. For example, Maven automatically
introduces an easy installation and replacement process. Additionally, Java is a very
portable programming language. There are Java versions for nearly all major operating
systems. Since CombTest uses Java 8, which is one of the most used Java version to date,
nearly everyone can use CombTest on their computers.
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6.2.2 SonarQube

To get a few metrics about its code quality, CombTest was examined using SonarQube
[SS18]. The analysis used commit fd8cc50e97cf36ed860fa00891e810b79c92c707 and an
off-the-shelf version of SonarQube 7.2.1. Consequently it is easily reproducible.
The analysis uncovered some interesting statistics. CombTest consists of exactly 165

classes stored in 150 files. They collectively contain 756 functions spread across 6,887
lines of code. In addition to these code lines, there are 22.4% comments and some empty
lines, amounting to a total of 12,118 lines. By far the biggest module is engine, containing
3851 lines of code, followed by model and then the JUnit extension.

While SonarQube does report some issues for each module, all of those are false
positives. For example, one issue criticizes catching Throwable instead of Exception.
However, catching Throwable is intended to notice test failures. Otherwise, CombTest
could fail every time a test case uses an JUnit assert method. Hence, these kind of
issues can, and should, not be fixed.
SonarQube reports test coverage at 78.9% for all modules, with engine and model

having 89.3% and 85.5% respectively. For these two modules the numbers are quite good
and indicate enough tests, but the JUnit extension is not tested at all since it was just
implemented as a proof of concept on top of the framework. However, extensive manual
testing showed no failures.

6.3 Experiments

Knowing that CombTest can, in some way, localize faults and adheres to certain quality
standards is a very important step. However, for practical use knowing that it can localize
these faults in a way which works with real combinatorial testing is even more important.
Therefore, this section deals with some experiments which were conducted to show that
CombTest reliably finds failure-inducing combinations for IPMs near to practical use
(that is, if the used localization algorithm is able to find the combinations).

To examine CombTest for this characteristic, several experiments were conducted.
For each experiment, a model definition was taken from the CITLAB’s unconstrained
benchmark IPMs, and CombTest’s JUnit extension introduced several failure-inducing
combinations [VG12; VG13]. Since writing test oracles or generating valid inputs for
programs based on abstract IPMs is another big and complex topic of combinatorial
testing, all faults were mocked instead by throwing an exception via JUnit’s assertFalse
for specific input combinations.
The experiments used two model from CITLAB: Banking2 and Healthcare2. They

each have several constraints, since almost no realistic IPM is totally unconstrained.
Banking2 has a 4× 214 configuration. This means that there is one parameter with four
values, and fourteen parameters with two values each. Meanwhile, Healthcare2 has a
4× 35 × 25 configuration. Testing strength was set to 3 in each test. Every experiment
used CombTest’s Reporter extension point to gather interesting information, like the
number of fault localization iterations, total number of test cases, and many more. Table
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Fault Model Algo. #Init. #Local. #Iter. #Found

0=0, 1=0, 2=0

Healthcare2

AIFL 73 189 1 6528
IDD 73 10 10 1
IterAIFL 73 1235 2 6528
BEN 73 58 7 1

Banking2

AIFL 47 81 1 18344
IDD 47 11 11 1
IterAIFL 47 564 2 18344
BEN 47 27 4 1

0=0, 1=0

Healthcare2

AIFL 73 249 1 17501
IDD 73 6 6 1
IterAIFL 73 1678 2 17501
BEN 73 58 7 1

Banking2

AIFL 47 124 1 58251
IDD 47 7 7 1
IterAIFL 47 899 2 58251
BEN 47 15 2 175

Table 6.1: All experiment results. The rows contain (from left to right): The failure-
inducing combinations, CITLAB model, fault localization algorithm, number of
initial test cases, number of localization test cases, number of fault localization
iterations, number of “failure-inducing” combinations the algorithm reported.

6.1 shows some selected values. Each fault is represented as a collection of value and
parameter indexes. For example, 0=1,3=2 means that the failure-inducing combination
is mapping the first parameter to its second value, and the fourth one to its third value
(indexes start at zero). The indexes are taken from the InputParameterModels inside
the test classes in the experiments package inside the evaluation Maven module.

As we can see in Table 6.1, the algorithms all have very different usage patterns. While
AIFL and IterAIFL use only one and two iterations respectively and generate many
fault localization test cases, Improved Delta Debugging takes the opposite approach and
generates only few test cases with one test case per iteration. BEN is in between those
extremes, generating multiple test cases per iteration with an relatively arbitrary number
of test cases. The number of calculated possible failure-inducing combinations also differs
greatly due to algorithm design. In each case, the returned combinations included the
failure-inducing combination. All in all, the results show that CombTest can support a
wide variety of fundamentally different fault localization algorithms for combinatorial
testing.
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The first two chapters of this thesis introduced the general problem of automated fault
localization for combinatorial testing. While there were some available programs for fault
localization, none of them allowed for a fully automated setting. To that end, this thesis
has made several contributions.
First, chapter 2.1 gave a general overview of combinatorial testing. In addition to

basics like parameter, values, and constraints, it introduced more complex topics such
as negative testing and fault localization. Chapter 3 then analyzed existing work done
in the realm of combinatorial testing. While there are some approaches to automated
combinatorial testing and to manual fault localization, there is no work connecting both
topics for automated fault localization. Thus, the need for a corresponding framework
was established.

Before one could write any such framework, on needs basic requirements. Consequently,
chapter 4 examined objectives any fault localization framework should fulfill. This
included the need for an extensible platform to which third party developers could
contribute their own algorithms to advance the field through collaboration. To reach
these goals, a framework needs to satisfy many requirements, both specific to general
fault localization, and to an extensible platform. Those requirements were specified, and
a following section extracted a general architecture out of them.
As a proof on concept for this general architecture, chapter 5 introduced CombTest,

a Java framework. Besides a general usage API, this chapter also presented some
implementations for common fault localization algorithms.

Chapter 6 then evaluated CombTest. While we saw that CombTest fulfills all require-
ments and the experiments showed that the general idea of automated fault localization
worked as expected, there were some points which the evaluation by ISO/ICE 25010:2011
found deserving further improvements. The following list of future improvements includes
those points. In addition to general framework enhancements, it also includes general
research which could advance the field of (automated) fault localization:

Evaluate CombTest Support in other Testing Frameworks

Currently, only a JUnit extension exists for CombTest. Since it is designed to not depend
on any specific testing framework, it should be possible to introduce extensions for other
testing frameworks. For example, TestNG could also support combinatorial tests via
CombTest.
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Parallel Test Execution

JUnit 5.3 introduced support for native parallel test execution. This even works when
using TestTemplateInvocationContextProviders like CombTest’s JUnit extension.
However, JUnit currently stops the execution if one parallel test executor does not find
any more test cases to evaluate. Since other executing threads could still be evaluating
the result for test cases from the initial test suite, fault localization algorithms may need
to generate additional test cases afterwards. These test cases will no longer be executed.
A possible solution would be to make the TestCaseSpliterator thread safe. Since
the actual execution happens in the tryAdvance method, this would not be as easy as
adding a synchronized keyword.

Test Case Caching

CombTest recalculates all test cases for every run. Consequently, complex models take
a very long time to evaluate. This is especially obstructive in the development of new
test cases, when a developer already finished his/her model, and just wants to adjust
the actual test method. Therefore, it would make sense to introduce functionality which
caches calculated test cases based on equivalence of IPMs and generators. As a result,
only one run would take a very long time, and any subsequent runs would be much faster.
This feature could be realized as an additional extension point so that developers can use
any external data storage they want. Therefore, sharing test cases across development
and testing machines would be possible with a central database.

Increase Testability of Managers

As stated in paragraph 6.2.1, most managers like the BasicCombinatorialTestManager
are not very well testable. This class could be refactored into multiple classes to support a
better testability. Next, one could write more unit tests to guarantee sufficient regression
testing.

Dynamic Fault Localization and Combinatorial Testing

Paragraph 6.2.1 introduced the concept of algorithms which combine fault localization
and general combinatorial testing. In these algorithms, passing tests cases generated for
fault localization could count towards the t-value-combination coverage criterion. To
date, no such algorithms are known, and as of now, CombTest does not have the ability
to support it. Consequently, future work could develop such an algorithm and implement
support for it in CombTest.
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