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Abstract—Testing with invalid test inputs is important to
evaluate the robustness of a system. Combinatorial robustness
testing is an approach to generate valid and invalid test inputs
separately. Unfortunately, it is easy to create over-constrained test
models. As a result, not all specified invalid values or invalid value
combinations appear in the test suite. Previous work proposed
to repair the test model manually or semi-automatically based
on conflict detection and diagnosis techniques. In this paper, we
extend that work and present a fully-automatic approach that
allows to generate invalid test inputs from over-constrained test
models based on alternative constraint handling strategies.

Index Terms—Robustness Testing, Combinatorial Testing, In-
consistent Constraint Set, Model-based Diagnosis

I. INTRODUCTION

Robustness describes “the degree to which a system or com-

ponent can function correctly” in the presence of invalid inputs

[1]. Invalid inputs are inputs to the system that contain invalid

values like a string value when a numerical value is expected,

or invalid value combinations like a begin date which is after

the end date. Oftentimes, error-handlers are implemented to

make a system robust by appropriately reacting to external

faults. But, error-handlers can contain up to three times more

faults than normal source code [2]. Therefore, testing for

robustness with invalid inputs is important.

Invalid values and invalid value combinations can cause

input masking [3]–[8]. Once the SUT evaluates invalid input,

the SUT initiates error-handling and responds with an error

message. The remaining values and value combinations remain

untested as they are masked.

Combinatorial robustness testing (CRT) is an extension to

combinatorial testing (CT) that separates the generation of

valid and invalid test inputs to avoid potential input masking

caused by invalid values and invalid value combinations [7],

[8]. Similar to CT, parameters and values are modeled and

exclusion-constraints are used to exclude irrelevant value com-

binations. In addition, the test model is enriched with semantic

information to mark certain values and value combinations

as invalid. Invalid values and invalid value combinations are

excluded from valid test inputs. But, they are included in

invalid test inputs such that each invalid value and invalid

value combination appears in at least one test input with all

other values and value combinations being valid.

Two different approaches to CRT exist. Tools like AETG [4],

PICT [5] or ACTS [9] support the annotation of single values

as invalid. However, the annotation of invalid value com-

binations requires a workaround [10]. The tool coffee4j1

implements another approach that directly considers invalid

value combinations. Therefore, a second set of constraints

(error-constraints) is introduced to describe invalid values and

invalid value combinations [7].

Unfortunately, it is easy to create over-constrained test

models when using CRT with invalid value combinations [10]–

[12]. As a consequence, not all specified invalid values and

invalid value combinations appear in invalid test inputs and

faults may remain undetected.

Previous work discusses how to identify and repair over-

constrained test models manually supported by conflict detec-

tion techniques [11]. In addition, previous work discusses how

to repair test models semi-automatically using conflict diagno-

sis techniques that compute diagnosis hitting sets (DHS) [12].

When applying conflict diagnosis techniques, several DHS are

computed. One DHS must be selected and applied to the test

model. The selection of a DHS is important. All DHS can be

applied to create test models that are not over-constrained.

However, not all DHS result in a correct test model and

faults may remain undetected [12]. Then, valid test inputs may

contain invalid values or invalid test inputs may contain more

than one invalid value. As a consequence, a potentially manual

oracle is required to select a DHS.

In practice, manual and semi-automatic repair could be

rejected because it can be perceived as too time-consuming,

too costly or too complex. A fully automated approach is

desirable to generate test inputs even in the presence of over-

constrained test models. Then, the repair can be postponed or

even omitted.

Therefore, this paper presents an automatic approach to

generate invalid test inputs directly from over-constrained test

1https://coffee4j.github.io
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p1 : T itle V1 = {Mr,Mrs, 123}
p2 : GivenName V2 = {John, Jane, 123}
p3 : FamilyName V3 = {Doe, Foo, 123}
c1 : T itle �= 123
c2 : GivenName �= 123
c3 : FamilyName �= 123
c4 : T itle = Mrs ⇒ GivenName = Jane
c5 : T itle = Mr ⇒ GivenName = John

Fig. 1. Example Test Model with Five Error-Constraints

models without repairing the test model beforehand. Instead,

different constraint handling strategies are presented to deal

with conflicts during the generation.

The paper is structured as follows. First, an example il-

lustrates over-constrained test models and repair techniques.

Section III and Section IV summarize foundations of CRT

and related work. Different constraint handling strategies are

discussed in Section V. As an evaluation, we compare the dif-

ferent strategies in Section VI and conclude with a summary.

II. EXAMPLE

Throughout the paper, we reuse an example from previous

work [11], [12]. It is a customer registration service which

checks the correct addressing of a customer. Therefore, the

entered data must match the intended semantics of the input

fields. Invalid values (denoted as 123) should not be computed

and a customer’s title should match the gender of the given

name. The service should identify invalid inputs and it should

return an error message.

A test model for the example is depicted in Figure 1. Error-

constraints describe invalid values like [GivenName:123]

and invalid value combinations like [Title:Mrs, Given

Name:John]. For instance, test input [Title:Mrs, Given

Name:Jane, FamilyName:123] is invalid because it con-

tains a family name that does not satisfy error-constraint c3.

It is also an example of input masking. Because of the family

name, an error message is returned to the user before the other

parameter values are evaluated.

To prevent input masking, a combination strategy generates

valid test inputs which satisfy all exclusion- and error-con-

straints [7]. Invalid test inputs are generated and each specified

invalid value and invalid value combination should appear in

at least one test input of which all other values and value

combinations are valid. For the given example, at least one

test input should contain [Title:123] as specified by error-

constraint c1.

The depicted test model is over-constrained. Thus, not all

specified invalid values or invalid value combinations appear

in the test inputs. First, no test input for [GivenName:123]

of error-constraint c2 can be found that satisfies all other con-

straints: The combinations [Title:Mr, Given Name:123]

and [Title:Mrs, GivenName:123] cannot satisfy error-

constraints c4 and c5. [Title:123, GivenName:123] does

not satisfy c1. The invalid value combinations [Title:Mr,

GivenName:123] and [Title:Mrs, GivenName:123] as

specified by c4 and c5 cannot satisfy error-constraint c2.

To repair the test model, either error-constraint {c2} or

{c4, c5} must be relaxed [12]. To relax the latter, the con-

straints can be rewritten to not longer specify [Title:Mrs,

GivenName:123] and [Title:Mrs, GivenName:123]:

c′4 : T itle = Mrs⇒ GivenName = Jane

∨ (T itle = Mrs ∧GivenName = 123)

c′5 : T itle = Mr ⇒ GivenName = John

∨ (T itle = Mr ∧GivenName = 123)

(1)

In the next section, techniques to identify and semi-

automatically repair over-constrained test models are recapit-

ulated. More details can be found in previous work [7], [11],

[12]. Afterwards, the direct generation of invalid test inputs

from over-constrained test models is discussed.

III. COMBINATORIAL ROBUSTNESS TESTING

A. Basic Definitions

CRT is a black-box test design technique that systematically

generates test inputs based on a given test model. It is an

extension of CT that generates separate test suites with valid

and invalid test inputs [7]. The test model is a quadruple

TM = 〈P, V,Cex, Cerr〉. It contains a set of n input parameters

P = {p1, ..., pn} and each input parameter pi is associated

with a non-empty set of values Vi = {v1, ..., vmi}. Cex and

Cerr are sets of constraints which are explained in subsequent

paragraphs.

A tuple is a set of parameter-value pairs for d distinct pa-

rameters such as [Title:Mr, GivenName:John]. A tuple

with n parameter-value pairs of is a test input which can be

used to stimulate the SUT. A tuple τa covers another tuple τb
if and only if τa includes all parameter-value pairs of τb.

Further on, a combination strategy describes how values

are selected and combined to test inputs such that a coverage

criterion is satisfied [13]. A coverage criterion is a condition

that must be satisfied by a combination strategy. In the context

of CT, coverage criteria are defined in relation to a test model.

Real-world systems often have restrictions in their input

domains and certain combinations of parameter values should

not be combined [14]. These value combinations are irrele-
vant as they are, for instance, not executable or of no interest.

Therefore, irrelevant value combinations should be removed

from the test suite.

Constraint handling can be used to exclude irrelevant value

combinations [14]. Constraints are explicitly modeled as log-

ical expressions [15]. A function Γ(τ, C) → Bool evaluates

whether a tuple τ satisfies a set of constraints C. A combina-

tion strategy generates test inputs that satisfy the constraints

and excludes irrelevant value combinations. Formally, we

denote a set of constraints to distinguish between relevant

and irrelevant tuples as exclusion-constraints (Cex). A tuple

τ is relevant if it satisfies every exclusion-constraint, i.e.

Γ(τ, Cex) = true. A tuple is irrelevant if at least one ex-

clusion-constraint remains unsatisfied, i.e. Γ(τ, Cex) = false.

Relevant tuples are further partitioned into valid and invalid

tuples. Valid tuples are relevant and do not contain any invalid
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value or invalid value combinations to prevent error-handling.

Invalid tuples are relevant but contain at least one invalid value

or one invalid value combination to trigger error-handling.

A strong invalid tuple contains exactly one invalid value

or exactly one invalid value combination to prevent that one

masks the other.

Valid test inputs are generated to satisfy a coverage criterion

like t-wise coverage excluding all values and value combi-

nations that are irrelevant or invalid. Invalid test inputs are

generated to satisfy criteria like single error coverage [13] or

t-wise error coverage [4], [5], [7].

Single error coverage is satisfied if each invalid value

and each invalid value combination appears in at least one

strong invalid test input. The t-wise error coverage criterion

is satisfied if each invalid value or invalid value combination

is combined to strong invalid test inputs with all valid combi-

nations of t parameter values. The criterion targets faults that

are caused by the interaction of an invalid value or an invalid

value combination with other parameter values.

In other words, strong invalid test inputs are generated to

ensure that one invalid value or invalid value combination is

not masked by another invalid value or invalid value combina-

tion. Furthermore, t-wise error coverage reduces the risk that

invalid values or invalid value combinations are masked by

valid values or valid value combinations.

B. Generation of Strong Invalid Test Inputs

Two different CRT approaches exist [10].

The first approach [3]–[5], [9] includes the concept of

invalid values to generate strong invalid test inputs. Values are

divided into two disjoint subsets to represent valid and invalid

values, i.e. Vi = V valid
i ∪ V invalid

i . Then, the invalid values of

each parameter are excluded from the generation such that the

test inputs satisfy the t-wise coverage criterion for the valid

parameter values. Afterwards, each invalid value is combined

with valid values of the other parameters such that every

test input contains exactly one invalid value. Invalid value

combinations are not directly supported. To model invalid

value combinations, a workaround which combines invalid

values and exclusion-constraints [10] is required.

The second approach [7], [10] includes the concept of

of invalid values and invalid value combinations. A new

group of constraints is introduced to describe them: error-
constraints (denoted as Cerr). A relevant tuple is valid if

all exclusion-constraints and all error-constraints are satisfied:

Γ(τ, Cerr ∪Cex) = true. A relevant tuple is invalid if all ex-

clusion-constraints are satisfied but at least one error-constraint

remains unsatisfied. It is strong invalid if exactly one error-

constraint remains unsatisfied: ∃!c ∈ Cerr,Γ(τ, {c}) = false

and Γ(τ, Cex ∪ Cerr\{c}) = true.

Let gen(P, V, t, C) be a t-wise combination strategy

that generates a set of test inputs for given input parameters

and testing strength t that satisfy a set of constraints C.

Valid test inputs are generated such that they satisfy all con-

straints, i.e. gen(P, V, t, Cerr ∪ Cex). Strong invalid test

inputs are generated by iterating through all error-constraints

one at a time. The currently selected error-constraint ci is

negated (denoted as ci) and test inputs are generated such

that all constraints including ci but excluding ci are satisfied,

i.e. ∀ci ∈ Cerr , gen(P, V, t, (Cerr\{ci}) ∪ {ci} ∪ Cex).

Thereby, strong invalid test inputs can be generated for each

specified invalid value and invalid value combination.

The following discussions are based on the second ap-

proach. But, the concepts can be transferred to the first

approach as well.

Error-constraints have a dual role in the generation process.

When generating valid test inputs, all error-constraints specify

tuples that should be excluded. When generating invalid test

inputs for error-constraint ci, all other error-constraints specify

tuples that should be excluded. But, error-constraint ci also

specifies a set of invalid tuples (denoted as Ii), i.e. invalid

values and invalid value combinations. We denote this set as

Ii. To distinguish invalid tuples, we use an index τj . While

each invalid tuple τ ∈ Ii must not appear in any valid test

input, each invalid tuple must appear in at least one invalid

test input to either satisfy single or t-wise error coverage.

By the example, the following invalid tuples are specified.

I1 = {[Title:123]},
I2 = {[GivenName:123]},
I3 = {[FamilyName:123]},
I4 = {[Title:Mrs, GivenName:John],

[Title:Mrs, GivenName:123]}
I5 = {[Title:Mr, GivenName:Jane],

[Title:Mr, GivenName:123]}

(2)

C. Repair of Over-Constrained Test Models

Unfortunately, strong invalid test inputs cannot be generated

if constraints are over-constrained [10], [11]. Contradictions

between constraints prevent some invalid values or invalid

value combinations from appearing. For further explanations,

conflicts and missing invalid tuples are defined [11].

These ideas are based on conflict detection and diagnosis

techniques which are general techniques to identify minimal

subsets of constraints that are responsible for faulty behaviour

and minimal subsets of constraints that must be relaxed to

repair the faulty behaviour [16].

Definition 1: When generating strong invalid test inputs for

error-constraint ci, a conflict is a contradiction between error-

constraint ci and some other constraints (Cerr\{ci})∪Cex. The

interaction between ci and some other constraints explicitly or

implicitly prevents an invalid tuple τ ∈ Ii from being covered

by at least one strong invalid test input.

Definition 2: A test model is considered over-constrained if

and only if at least one conflict exists.

Definition 3: An invalid tuple τ ∈ Ii specified by error-

constraint ci is a missing invalid tuple if and only if a conflict

with some other constraints (Cerr\{ci})∪Cex prevents it from

appearing in any strong invalid test input.

The set of all missing invalid tuples for error-constraint ci
is denoted as Mi ⊆ Ii. An invalid tuple τj ∈ Ii is missing if

τj ∈ Mi. We assume that τj1 ∈ Ii and τj2 ∈ Mi refer to the
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same invalid tuple when j1 = j2. Mi is computed by checking

for each invalid tuple, if at least one strong invalid test input

can be generated. For the example, the sets are as follows.

M2 = {[GivenName:123]}
M4 = {[Title:Mrs, GivenName:123]}
M5 = {[Title:Mr, GivenName:123]}

(3)

To explain the absence of a missing invalid tuple, the notion

of conflict sets is introduced [11].

Definition 4: A conflict set Oi,j ⊆ (Cerr\{ci}) ∪ Cex is a set

of constraints that explains the absence of a missing invalid

tuple τj ∈ Ii. No invalid test input exists that covers τj while

satisfying all constraints of the conflict set Oi,j .

To resolve the conflict, some constraints of the conflict sets

must be relaxed [11]. However, more than one conflict can

exist for an error-constraint. To repair the test model for error-

constraint ci, all conflicts must be resolved. All constraints

that must be relaxed in order to remove all conflicts for error-

constraint ci can be determined via diagnosis sets [12], [16]:

Definition 5: For a missing invalid tuple τj ∈Mi, a diagnosis
set 
i,j ⊆ (Cerr\{ci}) ∪ Cex is a set of constraints such

that all conflicts for τj between error-constraint ci and some

other constraints can be removed by relaxing all constraints

in 
i,j . Formally, 
i,j is a diagnosis set if and only if

Γ(τj , ((C
err\{ci}) ∪ Cex)−
i,j) = true.

Technically, all constraints (
i,j = (Cerr\{ci})∪Cex) form

a diagnosis set. However, it is preferable to relax fewer

constraints.

Definition 6: A diagnosis set 
i,j is minimal if and only if

no proper subset 
′
i,j ⊂ 
i,j is a diagnosis set.

Definition 7: A diagnosis set 
i,j is cardinality-minimal if

and only if there exists no other minimal diagnosis set 
′
i,j

for the same missing invalid tuple τj ∈ Mi that consists of

fewer constraints, i.e. �
′
i,j such that | 
′

i,j | < | 
i,j |.
IV. RELATED WORK

Yilmaz, Dumlu, Cohen and Porter [6] define the input
masking effect “... [as] an effect that prevents a test [input]

from testing all combinations of input values, which the test

[input] is normally expected to test”.

Different types of input masking exist. For instance, test

inputs are not executable when they cover irrelevant value

combinations and all other values and value combinations of

the test input are masked.

A different example about testing configurations of soft-

ware can be used for illustration. Consider the value com-

bination [Browser:Edge, OS:Linux] that is irrelevant be-

cause Edge cannot be executed on Linux. Further on,

consider a failure that is triggered by [Zoom:Enabled,

Browser:Edge]. The failure may not be triggered by 2-wise

testing with test input [Zoom:Enabled, Browser:Edge,

OS:Linux]. To overcome this issue, the irrelevant value

combination can be avoided by modelling it as an exclusion-

constraint.

Alternatively, the perspective on failure-triggering combi-

nations can be changed such that [Zoom:Enabled, Bro-

wser:Edge, OS:Windows] instead of [Zoom:Enabled,

Browser:Edge] triggers the failure. In that sense, increasing

the testing strength to t = 3 is an alternative to introducing

exclusion-constraints.

The same effect can be observed with invalid values and

invalid value combinations where error-handling causes an

early return and other values and value combinations remain

untested. In previous work, we measured the effectiveness of

CT in the presence of error-handling and invalid values [8]. As

a result, CT can be effective. But, the required testing strength

to reliably detect faults increases with the number of error-

handlers and parameters involved in error-handling. Further-

more, we conduct experiments to compare the effectiveness

and efficiency of t-wise error coverage with t-wise coverage

[7]. Overall, CRT generates effective and smaller test suites

compared with CT. But, CRT requires the additional modelling

of invalid values and invalid value combinations.

To the best of our knowledge, Sherwood [3] first discusses

input masking in the context of invalid values and invalid value

combinations. Cohen [4] and Czerwonka [5] introduce the

concept of invalid values to combination strategies. However,

since invalid value combinations are not directly supported by

their combination strategies, we introduce error-constraints [7],

[10]. Although, all CRT approaches support the generation of

invalid test inputs that satisfy the single error and t-wise error

coverage criterion.

To repair over-constrained test models in CRT, we [11]

apply conflict detection techniques and propose a repair pro-

cess to support manual relaxation. Further, we [12] propose

a technique where diagnosis hitting sets (DHS) are computed

and one DHS is applied to automatically repair a test model.

A DHS is a set of constraints such that their relaxation repairs

the complete test model. But, typically more than one DHS

is constructed for an over-constrained test model. Then, one

out of several DHS must be manually selected. While the

application of each DHS repairs a test model, not all repaired

test models are necessarily correct.
For the example, DHS1 = {c4, c5} and DHS2 = {c2} can be

computed. Selecting DHS1 results in the repaired test model

as described in Section II (Equation 1). In contrast, selecting

DHS2 removes error-constraint c2 entirely. Then, two test

inputs are generated to test [Title:Mrs, GivenName:123]

and [Title:Mr, GivenName:123]. Since [GivenName:

123] is not excluded from generation of invalid test inputs, not

strong invalid test inputs with [Title:123, GivenName:

123] are also possible.

A DHS is constructed by combining diagnosis sets for all

missing invalid tuples. In this paper, we also use diagnosis sets.

But, instead of applying them directly to the over-constrained

test model, we adjust the constraint handling used internally by

the combination strategy to allow a fully automated generation.

Pill and Wotawa also apply conflict diagnosis techniques

to CT. Although their focus is substantially different. They

combine CT and conflict diagnosis techniques to derive

knowledge-bases that can be used for abductive diagnosis [17],

[18]. Further on, they use conflict diagnosis techniques to
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compute which components of a SUT explain the failure of

test inputs [19].

Gargantini et al. [20], [21] also repair constraints of com-

binatorial test models. However, their approach is not based

on conflict diagnosis techniques. Instead, test inputs that

violate some exclusion-constraints are purposely generated and

executed to find exclusion-constraints which are either too

weak or too strong.

Grindal, Offut and Andler [13] discuss coverage criteria for

invalid test inputs as part of a survey on combination strategies.

Base-choice is another coverage criteria and combination

strategy that supports invalid values if the base test input is

valid [13]. To model invalid value combinations, the base test

input must be adjusted or several base test inputs are required.

Hallé et al. [22] propose a generalization of t-wise test-

ing and introduce a combination strategy for existential-con-
straints which are constraints that must be satisfied by at least

one test input. In their approach, one test input may satisfy

more than one existential-constraint whereas in CRT, negated

error-constraints must be satisfied by separate test inputs.

Hence, CRT also satisfies an existential coverage criterion.

V. CONSTRAINT HANDLING STRATEGIES FOR

OVER-CONSTRAINED TEST MODELS

A. Overview

When generating test inputs, tuples of size t are created

and extended until they consist of n parameter-value pairs

for all n parameters. Every time a tuple τ is created or

extended, constraint handling is used to check if possible

extensions of τ ′ ⊃ τ satisfy all constraints. Any extension

that does not satisfy all constraints is rejected. In order to

check a tuple τ , the parameters, value, all constraints and τ

are transformed into a constraint satisfaction problem (CSP).

Different approaches for the transformation into CSPs exist

which we denote as constraint handling strategies.

A CSP consists of three components X, D and C [23]. X

is a set of variables, D is a set of domains with one domain

for each variable and C is a set of constraints. A solution

for a CSP is an assignment of values to variables which is

both consistent and complete. An assignment that does not

violate any constraint is consistent. An assignment is complete

if every variable has a value assigned.

A solver searches for a solution of the CSP. If the solver

finds a solution, the tuple τ is further used in test input

generation. If no solution exists, the tuple is rejected since

one or more constraints are not satisfied.

In the following, different constraint handling strategies are

discussed. The hard constraint handling strategy is recapitu-

lated. Then, soft constraint handling strategies are discussed.

B. Hard Constraint Handling Strategy

Hard constraint handling (HCH) is the default strategy that

is used in tools like ACTS or coffee4j. HCH requires a

solution to satisfy all constraints in order to be consistent. For

the sake of clarity, Figure 2 depicts the internal representation

of the example (Section II, Figure 1). The transformation into

p1 : T V1 = {1, 2, 3}
p2 : G V2 = {1, 2, 3}
p3 : F V3 = {1, 2, 3}
c1 : T �= 3
c2 : G �= 3
c3 : F �= 3
c4 : T = 2 ⇒ G = 2
c5 : T = 1 ⇒ G = 1

Fig. 2. Internal Representation of Example Test Model

a CSP is as follows. Each input parameter pi is represented

as a variable xi ∈ X. The domain of xi represents the

mi values Vi as integers Dxi = {1, ...,mi}. All specified

constraints are translated to constraints of the CSP. The

parameter Title is represented as the variable T and its

values are DT = {1, 2, 3}. Variable G represents GivenName

and F represents FamilyName. Constraints are translated

accordingly. For instance, T itle �= 123 becomes T �= 3.

The values of the tuple are also added as constraints. We

refer to them as tuple-constraints and a tuple [Title:Mr,

GivenName:John] translates to {T = 1, G = 1}τ .

X = {T,G, F}
D = {DT = {1, 2, 3}, DG = {1, 2, 3}, DF = {1, 2, 3}}
C = {T �= 3, G �= 3, F �= 3,

T = 2⇒ G = 2, T = 1⇒ G = 1}
∪ {T = 1, G = 1}τ

(4)

When using the HCH strategy with an over-constrained

test model, single error coverage is not satisfied since miss-

ing invalid tuples do not appear in test inputs. The combi-

nations [Title:Mr, GivenName:123], [Title:Mrs, Gi-

venName:123] and [GivenName:123] are specified but

cannot appear in any strong invalid test input.

To cover all specified invalid values and invalid value

combinations, the HCH strategy requires the tester to remove

all conflicts. In this case, the test model can be repaired by

relaxing c4 and c5 as depicted by Equation 1 in Section II.

However, the techniques presented in related work [11], [12]

are manual or semi-automatic.

In the following, the soft constraint handling strategies that

does not require any manual work is discussed.

C. Soft Constraint Handling Strategy

1) General Idea: The idea of soft constraint handling

(SCH) is based on partial constraint satisfaction as described

by Freuder and Wallace [24]. Instead of requiring all con-

straints to be satisfied by a solution, a partial solution that

satisfies as many constraints as possible is accepted as well.

For the first time, we introduced the idea of SCH in

previous work [10] where we sketched it in an overview

fashion as a semi-automatic strategy with a threshold that

must be manually determined. Here, we present a substantially

extension of the initial SCH idea that relies on diagnosis sets

to fully automate the strategy.

For SCH, hard- and soft-constraints are distinguished. A

solution must satisfy all hard-constraints (denoted as H) but

not all soft-constraints (denoted as S). Even though, it is

desirable to satisfy as many soft-constraints as possible.
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To take into account that the satisfaction of soft-constraints

is optional, each soft-constraint ci ∈ S is reified. An additional

boolean variable ri ∈ X is created for each soft-constraint ci
and ci is modified to capture whether or not it is satisfied. The

variable ri is true if the constraint ci is satisfied and false

otherwise, i.e. ri ⇔ ci.

For the example, the boolean variable r1 ∈ X is added to

reify constraint c1 : T �= 3. The equality operator is used to

align the value of r1 with the satisfaction of c1 : r1 ⇔ T �= 3.

The CSP is transformed into an optimization problem and

a utility function U counts all reified soft-constraints ri that

are satisfied by assignment α. Then, the solver searches for an

assignment α that satisfies all hard-constraints and calculates

the utility value.

U(α) =
∑

ci∈S
1× α.ri (5)

When checking whether or not to reject a tuple, a binary

answer true or false is required. However, an optimization

problem always leads to a solution. Even zero satisfied soft-

constraints with a utility value of zero may represent a con-

sistent assignment. Therefore, a threshold η with 0 ≤ η ≤ |S|
is introduced to decide whether or not α is acceptable. The

threshold is a lower boundary for the utility function η ≤ U(α).
An assignment is only consistent if at most η soft-constraints

remain unsatisfied. In other words, a consistent assignment

must satisfy at least |S| − η soft-constraints.

In the following, two strategies are discussed that are based

on the idea of soft constraint handling.

2) Basic Soft Constraint Handling Strategy: The translation

of parameters, values and constraints that are considered as

hard-constraints is analogous to the HCH strategy. Each input

parameter pi is represented as a variable xi ∈ X and xi

represents its domain as integers Dxi = {1, ...,mi}. Hard-

and soft-constraints are distinguished as follows. The tuple-

constraints {...}τ are considered as hard-constraints. Since we

are in the process of finding invalid test inputs for error-

constraint ci, the negated error-constraint ci is also considered

as a hard-constraint. The remaining constraints are modelled

as soft-constraints.

H = {ci} ∪ {...}τ
S = Cex ∪ Cerr\{ci} (6)

The threshold is enforced by a constraint |S| − η ≤ U(α).
An example CSP to generate invalid test inputs for error-

constraint c2 is shown below. The negation c2 is transformed

into the hard-constraint GivenName = 123 (G = 3 in the

internal representation). Constraints c1, c3, c4 and c5 are

modelled as soft-constraints. The threshold is enforced by

|{r1, r3, r4, r5}| − η ≤ (r1 + r3 + r4 + r5).

X = { T,G, F} ∪ {r1, r3, r4, r5 }
D = { DT , DG, DF , DR1,3,4,5 = {0, 1} }
C = { r1 ⇔ (T �= 3),

r3 ⇔ (F �= 3),

r4 ⇔ (T = 2⇒ G = 2),

r5 ⇔ (T = 1⇒ G = 1),

4− η ≤ (r1 + r3 + r4 + r5)

} ∪ { G = 3 } ∪ {...}τ

(7)

In addition, an actual value for the threshold η must be

determined. A threshold of η = 0 is identical with the HCH

strategy since all four soft-constraints must be satisfied. For

a threshold of η = 1, a solution must only satisfy three

out of four soft-constraints. Then, the following combinations

could be generated for error-constraint c2 because one of the

other error-constraints may remain unsatisfied: [Title:Mr,

GivenName:123, FamilyName:Doe], [Title:Mrs, Gi-

venName:123, FamilyName:Doe], and [Title:123,Gi-

venName:123, FamilyName:Doe].

To fully automate B-SCH, the threshold η must be deter-

mined automatically. It is important to use an appropriate

threshold. Otherwise, some missing invalid tuples could re-

main absent or too many constraints may remain unsatisfied.

A cardinality-minimal diagnosis set 
i,j describes a min-

imal number of constraints to relax in order to resolve all

conflicts that prevent τj ∈ Mi from appearing in a strong

invalid test input for error-constraint ci. Hence, a strong invalid

test input for τj ∈ Mi can be generated if | 
i,j | constraints

may remain unsatisfied.

Since strong invalid test inputs are generated for one error-

constraint at a time, the constraint handling strategy and

threshold can also be adjusted individually for each error-

constraint. Instead of using a global η for all error-constraints

[10], individual thresholds ηi can be determined for all error-

constraint ci. To determine one threshold ηi, the size of

cardinality-minimal diagnosis sets | 
i,j | for each missing

invalid tuple τj ∈ Mi must be checked and the maximum

size can be used as the threshold.

ηi = max
τj∈Mi

| 
i,j | (8)

If no conflict exists for error-constraint ci, i.e. if Mi is

empty, the threshold ηi = 0 is used which is equivalent to

the HCH strategy.

3) Diagnostic Soft Constraint Handling Strategy: Using the

size of cardinality-minimal diagnosis sets allows a complete

automation of the B-SCH strategy with individual thresholds

for each error-constraint. But, there are two more problems

with B-SCH.

First, all constraints are modelled as soft-constraints. Since

soft-constraints may remain unsatisfied, it can result in unnec-

essary relaxations. Soft-constraints also increase the CSP by

introducing an additional indirection and additional variables

via reification.
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Second, the threshold still increases the solution space

because thresholds for different invalid tuples of the same

error-constraint are not distinguished. For instance, error-

constraint c4 specifies two invalid value combinations. While

[Title:Mrs, GivenName:John] is not missing and does

not require any relaxation, [Title:Mrs, GivenName:123]

requires a relaxation of small c2. However, the threshold η4 = 1

is used for both invalid value combinations.

The diagnostic soft constraint handling (D-SCH) strategy

exploits the information from the diagnosis sets and to adjust

the constraint handling for each invalid tuple individually. Both

improvements are addressed in the following.

Minimize Number of Soft-Constraints: It is desirable to

have as few soft-constraints as possible. To distinguish hard-

and soft-constraints, we use the information from minimal

diagnosis sets.

For each missing invalid tuple τj ∈Mi, a set of d minimal

diagnosis sets MDSi,j = {
1
i,j , ...,
d

i,j} can be computed.

A constraint c ∈ Cex ∪ Cerr\{ci} that is not contained in any

minimal diagnosis set does not require relaxation. It should be

modelled as a hard-constraint. A constraint c ∈ Cex∪Cerr\{ci}
that is contained in at least one minimal diagnosis set may

require relaxation and should be modelled as a soft-constraint.

H ={ci} ∪ {...}τ∪
{c|c ∈ Cex ∪ Cerr\{ci} ∧ �
i,j ∈MDSi,j : c ∈ 
i,j}

S ={c|c ∈ Cex ∪ Cerr\{ci} ∧ ∃
i,j ∈MDSi,j : c ∈ 
i,j}
(9)

An example CSP to generate invalid test inputs for error-

constraint c2 is shown below. In the example, c2 specifies one

invalid value that is also missing. Three minimal diagnosis

sets exist MDS2,1 = {
1
2,1 = {c1},
2

2,1 = {c4},
3
2,1 = {c5}}.

Hence, error-constraint c3 can be modelled as a hard-constraint

while c1, c4, c5 must be modelled as soft-constraints.

X = { T,G, F} ∪ {r1, r4, r5 }
D = { DT , DG, DF , DR1,4,5 = {0, 1} }
C = { r1 ⇔ (T �= 3),

r4 ⇔ (T = 2⇒ G = 2),

r5 ⇔ (T = 1⇒ G = 1),

3− η ≤ (r1 + r4 + r5)

} ∪ { G = 3 } ∪ { F �= 3 } ∪ {...}τ

(10)

Individual Thresholds: To reduce the solution space, each

invalid tuple should have an individual threshold. Invalid tuples

τj ∈ Ii that are not missing (τj �∈ Mi) do not require any

relaxation. The threshold should be ηi,j = 0 which is equal

to the HCH strategy. In contrast, each missing invalid tuples

τj ∈Mi should have an individual threshold that corresponds

to the size of the cardinality-minimal diagnosis sets.

ηi,j = min
�i,j∈MDSi,j

| 
i,j | (11)

Since error-constraint c2 only specifies one invalid value,

the resulting CSP is similar to the one shown above (Equation

10). But, error-constraint c4 specifies two invalid value combi-

nations of which one is missing and one minimal diagnosis set

exists, i.e MDS4,2 = {
1
4,2 = {c2}}. As a consequence, error-

constraints c1, c3, c5 can be modelled as a hard-constraint while

only c2 must be modelled as a soft-constraint. In addition,

[Title:Mrs, GivenName:John] requires a threshold of

η4,1 = 0 and [Title:Mrs, GivenName:123] required a

threshold of η4,2 = 1.

In previous CSPs, the threshold value η was static and

determined beforehand (cf. Equation 8). Now, the CSP dis-

tinguishes between several threshold values depending on

the actual invalid tuple. As shown below, this behaviour

can be modelled with implications following the pattern

(<invalid tuple>)⇒ η = <value>.

X = { T,G, F} ∪ {r2 }
D = { DT , DG, DF , DR2 = {0, 1} }
C = { r2 ⇔ (G = 3),

(T = 2 ∧G = 1)⇒ η = 0,

(T = 2 ∧G = 3)⇒ η = 1,

1− η ≤ (r2)

} ∪ { T = 2 ∧G �= 2)

} ∪ { T �= 3, G �= 3, F �= 3, T = 1⇒ G = 1 } ∪ {...}τ
(12)

Using the information provided by minimal diagnosis sets,

the CSPs can be formulated much more specific to the

individual conflicts as shown above. In the following, the three

discussed constraint handling strategies are compared.

VI. EVALUATION

A. Experiment Design & Setup

In this paper, we propose alternative constraint handling

strategies to use in CRT with over-constrained test models

when manual [11] or semi-automatic [12] repair is rejected.

The objective of this experiment is to compare the alterna-

tive strategies with the default strategy HCH and the semi-

automatic repair technique of [12]. We extended the coffee4j

tool, implemented the constraint handling strategies, and ap-

plied them to different over-constrained test models. Source

code and experiments are available at our companion website2.

We evaluated the strategies in two dimensions. First, we

measured the computational overhead for test input generation

and compared the default HCH strategy with B-SCH and

D-SCH. Second, we analyzed characteristics of generated

test suites generated by HCH, B-SCH and D-SCH and also

compared them with the semi-automatic repair technique.

Eight benchmark test models are used for the experiments

[12]. Addressing is the running example used throughout

this paper. Registration is a real-world test model from

industry. The other test models originate from [25], [26] and

are often used to compare combination strategies. All test

models are listed in Table I. The first two columns describe

the original test models. The P & V column describes the

parameter values in exponential notation where vp refers to

p parameters with v values. Invalid Tuples describes the

2https://github.com/coffee4j/iwct-2020
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invalid tuples as specified by the error-constraints. Here, xy

refers to y invalid tuples for x parameters.

As the original test models are not over-constrained, addi-

tional error-constraints are added to artificially create conflicts.

Column three describes the additional invalid tuples and the

fourth column describes the number of missing invalid tuples.

B. Results & Discussion

1) Computational Overhead: Table III depicts the mea-

sured times for test input generation in milliseconds using

the different constraint handling strategies. The test models

include the modifications to make them over-constrained.

Because otherwise, the soft-constraint handling strategies are

almost equal to HCH.

Overall, the generation times show that the alternative

constraint handling strategies are a feasible extension with

acceptable overhead. HCH is the fastest constraint handling

strategy in seven out of eight times. The absolute difference

between the slowest and fastest strategy is on average 1313.09

milliseconds and the relative difference is on average 188.49%.

Banking-1 performs significantly worse than all other

test models. The difference between the slowest and fastest

strategy is 6332.86 milliseconds (1028.23%). It requires long

generation times because it specifies 112 invalid tuples that

cover all five parameters of the test model [12]. Using B-SCH

or D-SCH involves a check of all 112 invalid tuples for missing

invalid tuples.

Without Banking-1, the absolute difference is 595.98

milliseconds (68.52%). Since the measured times range from

milliseconds to a few seconds, a slowdown by 68.52% or

even 188.49% on average makes the strategies still feasible

for application. This is especially true when compared to the

manual work that of repairing test models.

There is only one test model (HealthCare-2) for which

HCH is slower than B-SCH and D-SCH. But, the differences

are only 394.90 milliseconds (11.32 %) which is the lowest

difference measured among all test models. Therefore, we

assume this is caused by distortions from other applications

or operating system services.

When comparing the computation overhead of B-SCH

with D-SCH, the difference is the additional computation

of minimal diagnosis sets in the case of D-SCH. In total,

the differences between them are very small being 183.38

milliseconds (18.98%) on average. Banking-1 is the test

model that performed the worst with an overhead of 587.20

milliseconds (62.81%) for D-SCH. Without Banking-1, the

differences are even smaller (107.14 milliseconds, 17.88%).

2) Characteristics of Generated Test Inputs: Generating

test inputs from over-constrained test models with the default

HCH strategy results in missing invalid tuples. When repairing

an over-constrained test model, the repaired test model can be

used to generate test inputs. But, the repaired test model is not

necessarily equivalent to the hypothetical correct test model

[12]. Some missing invalid tuples may still not appear, some

may appear more than once and some may even appear in

one test input simultaneously. Therefore, we use the following

metrics to analyze and compare test inputs which result from

either the over-constrained or repaired test model. We compare

them with test inputs which result from the hypothetical

correct test model.

The metric NPIT (Not Present Invalid Tuple) counts the

number of invalid tuples that do not appear in any test input

despite being modelled by the correct test model.

The metric RIT (Redundant Invalid Tuple) counts the num-

ber of invalid tuples that do appear in at least two test inputs.

The metric NSITI (Not Strong Invalid Test Input) counts

the number of test inputs that contain more than one invalid

tuple.

Table II depicts characteristics of repaired test models, i.e.

the test suite size of the correct test model, the number of

DHS that lead to a correct test model and the total number of

computed DHS. A subset of characteristics derived from test

input generation is shown in Table IV. All results are available

online2. For each metric, three numbers are presented as a

(b - c) where a is the average number calculated from 30

repetitions with randomly shuffled test models, b denotes the

minimum and c denotes the maximum number if they differ

from the average number.

For the Addressing test model, four test inputs are gen-

erated using the HCH strategy and one invalid tuple is not

present. B-SCH and D-SCH result in seven test inputs that

include all invalid tuples as specified by the correct test model.

However, both SCH strategies lead to some redundant invalid

tuples and to some not strong invalid test inputs. Although, D-

SCH has a lower RIT and NSITI. When comparing the SCH

strategies with the semi-automatic repair strategy, two DHS

are computed of which one must be selected (See Table II).

One of the two DHS leads to a correct test model with which

five test inputs are generated. In comparison with B-SCH and

D-SCH, both repaired test models require fewer test inputs.

Both have no NPIT, fewer RIT and also on average fewer

NSITI. The running example is the only test model where the

repair technique performed better than B-SCH and D-SCH.

When considering HealthCare-1, the repair technique

again leads to a smaller test suite size but it also leads to

3.10 NPITs on average.

These characteristics can be observed among all test models.

While the semi-automatic repair technique leads to smaller test

suite sizes on average, it requires the selection of the correct

test model to ensure zero NPIT [12]. Otherwise, some invalid

tuples may remain absent. In contrast, B-SCH and D-SCH

have larger test suite sizes and RIT. But, the test suites have

zero NPIT which tackles the problem of over-constrained test

models and missing invalid tuples. In direct comparison, D-

SCH leads to lower RIT and fewer NSITI than B-SCH which

also increases the chance of detecting faults.

VII. THREATS TO VALIDITY

B-SCH and D-SCH are compared with HCH and with

the semi-automatic repair technique. The measured times

depend on the implementation of the techniques. Therefore,
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TABLE I
TEST MODELS USED FOR EVALUATION

Original Test Model Modifications
Name P & V Inv. Tuples Added Inv. Tuples Miss. Inv. Tuples
Addressing 3221 2213 22 3
Registration 61443129 21719 212 11
Banking-1 4134 5112 3221 28
Banking-2 41214 23 3211 4
HealthCare-1 61513226 31823 12 7
HealthCare-2 413625 5183621 4631 4
HealthCare-3 61514536216 231 3211 12
HealthCare-4 71615246312213 222 2111 13

TABLE II
CHARACTERISTICS OF REPAIRED

TEST MODELS

Test Suite
Size

# Correct
DHS

# All
DHS

5 1 2
26 1 32

112 1 16
3 1 4
21 1 4
25 4 8
31 1 10
22 1 16

TABLE III
TIMES FOR TEST INPUT GENERATION

Constr. Handl. Strategies
Name HCH B-SCH D-SCH
Addressing 6.84 9.46 11.94
Registration 1002.90 1638.72 1372.02
Banking-1 615.90 6361.56 6948.76
Banking-2 26.14 38.80 42.40
HealthCare-1 201.60 300.62 489.44
HealthCare-2 3882.10 3487.20 3583.56
HealthCare-3 3432.92 4540.62 4402.14
HealthCare-4 1851.46 3575.70 3522.18

TABLE IV
CHARACTERISTICS OF GENERATED TEST INPUTS

Name
Constr.
Handl.
Strategy

Test
Suite
Size

# NPIT # RIT # NSITI

Addressing HCH 4 1 0 0
B-SCH 7 0 1.67 (1-3) 0.97 (0-3)
D-SCH 7 0 1.37 (1-2) 0.37 (0-1)
Repair 5.50 (5-6) 0 0.50 (0-1) 0.17 (0-1)

HealthCare-1 HCH 16 7 0 0
B-SCH 23 0 0.50 (0-1) 6 (0-12)
D-SCH 23 0 0 0
Repair 18.5 (16-21) 3.10 (0-7) 0 0

we integrated our technique into the coffee4j tool which

also includes HCH and the semi-automatic repair technique.

The used test models do not represent real-world scenarios.

But, they are derived from existing benchmark test models

and the characteristics as well as modifications are public. For

additional investigation and replication, the implementation

and test models are publicly available2. The experiments are

carried out with an Intel i5 2.20 Ghz CPU and 12 GB of

memory. Resource consumption of other applications may

have distorted the results. Therefore, the measurements are

average numbers based on 50 repetitions.

To prevent results that are caused by symmetries between

test model and combination strategy, we repeated each exper-

iment 30 times with a randomly shuffled test model.

VIII. CONCLUSION

Combinatorial robustness testing (CRT) extends combina-

torial testing (CT) and separates the generation of valid and

invalid test inputs in order to avoid input masking caused by

error-handling. CRT is based on additional semantic informa-

tion that allows to distinguish valid from invalid values and

value combinations. It is implemented in several CT tools.

Although, AETG, ACTS and PICT only include the concept of

invalid values. In contrast, coffee4j uses error-constraints

to model invalid values and invalid value combinations. Un-

fortunately, it is easy to create over-constrained test models

when modeling invalid value combinations which results in

missing invalid tuples. As a result, faults can remain unde-

tected. Therefore, previous work applied conflict detection and

diagnosis techniques to identify and explain conflicts as well

as to repair over-constrained test models semi-automatically.

In this paper, we presented a technique to deal with over-

constrained test models fully automatic based on conflict di-

agnosis techniques. Instead of applying diagnosis sets directly

to the over-constrained test model, we adjusted the constraint

handling used internally by the combination strategy.

Based on the idea of partial constraint satisfaction, a SCH

strategy is proposed which allows some constraints to remain

unsatisfied during test input generation. To fully automate

the SCH strategy, minimal diagnosis sets are computed to

determine the required threshold. Two further improvements

are presented to minimize the number of soft-constraints and

to compute thresholds specific to each missing invalid tuple.

The alternative constraint handling strategies are imple-

mented in coffee4j to allow a comparison with the HCH

strategy and the semi-automatic repair technique. As an eval-

uation, benchmark test models are used to generate test inputs

and the time of generation as well as characteristics of the

generated test suites are analyzed. The results show that the

proposed constraint handling strategies are feasible alternatives

to the semi-automatic repair technique. The times measured

for test input generation indicate an acceptable computational

overhead. Besides the advantage of fully automation, the SCH

strategies also tackle the main problem of missing invalid

tuples as they lead to zero NPIT. In direct comparison with

B-SCH, D-SCH also leads to fewer RIT and NSITI.

In future work, we plan to further improve the performance

of SCH by relying on minimal forbidden tuples (e.g. [27])

instead of constraint solving.
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